article thumbnail

AIOps vs. MLOps: Harnessing big data for “smarter” ITOPs

IBM Journey to AI blog

MLOps is a set of practices that combines machine learning (ML) with traditional data engineering and DevOps to create an assembly line for building and running reliable, scalable, efficient ML models.

Big Data 266
article thumbnail

MLOps and DevOps: Why Data Makes It Different

O'Reilly Media

This is both frustrating for companies that would prefer making ML an ordinary, fuss-free value-generating function like software engineering, as well as exciting for vendors who see the opportunity to create buzz around a new category of enterprise software. Can’t we just fold it into existing DevOps best practices?

DevOps 144
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Streamline custom environment provisioning for Amazon SageMaker Studio: An automated CI/CD pipeline approach

AWS Machine Learning Blog

The solution described in this post is geared towards machine learning (ML) engineers and platform teams who are often responsible for managing and standardizing custom environments at scale across an organization. This approach helps you achieve machine learning (ML) governance, scalability, and standardization.

article thumbnail

How Rocket Companies modernized their data science solution on AWS

AWS Machine Learning Blog

Steep learning curve for data scientists: Many of Rockets data scientists did not have experience with Spark, which had a more nuanced programming model compared to other popular ML solutions like scikit-learn. Despite the support of our internal DevOps team, our issue backlog with the vendor was an unenviable 200+.

article thumbnail

Deploy Amazon SageMaker pipelines using AWS Controllers for Kubernetes

AWS Machine Learning Blog

Its scalability and load-balancing capabilities make it ideal for handling the variable workloads typical of machine learning (ML) applications. In this post, we introduce an example to help DevOps engineers manage the entire ML lifecycle—including training and inference—using the same toolkit.

DevOps 109
article thumbnail

MLOps and the evolution of data science

IBM Journey to AI blog

Because ML systems require significant resources and hands-on time from often disparate teams, problems arose from lack of collaboration and simple misunderstandings between data scientists and IT teams about how to build out the best process. How to use ML to automate the refining process into a cyclical ML process.

article thumbnail

Mastering MLOps : The Ultimate Guide to Become a MLOps Engineer in 2024

Unite.AI

Understanding MLOps Before delving into the intricacies of becoming an MLOps Engineer, it's crucial to understand the concept of MLOps itself. ML Experimentation and Development : Implement proof-of-concept models, data engineering, and model engineering. ML Pipeline Automation : Automate model training and validation.