Remove Data Ingestion Remove Data Science Remove ETL
article thumbnail

How Rocket Companies modernized their data science solution on AWS

AWS Machine Learning Blog

Rockets legacy data science environment challenges Rockets previous data science solution was built around Apache Spark and combined the use of a legacy version of the Hadoop environment and vendor-provided Data Science Experience development tools.

article thumbnail

Han Heloir, MongoDB: The role of scalable databases in AI-powered apps

AI News

Here are a few key reasons: The variety and volume of data will continue to grow, requiring the database to handle diverse data types—structured, unstructured, and semi-structured—at scale. Selecting a database that can manage such variety without complex ETL processes is important.

Big Data 303
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

A Comprehensive Overview of Data Engineering Pipeline Tools

Marktechpost

Introduction to Data Engineering Data Engineering Challenges: Data engineering involves obtaining, organizing, understanding, extracting, and formatting data for analysis, a tedious and time-consuming task. Data scientists often spend up to 80% of their time on data engineering in data science projects.

ETL 126
article thumbnail

A Simple Guide to Real-Time Data Ingestion

Pickl AI

What is Real-Time Data Ingestion? Real-time data ingestion is the practise of gathering and analysing information as it is produced, without little to no lag between the emergence of the data and its accessibility for analysis. Traders need up-to-the-second information to make informed decisions.

article thumbnail

ETL Process Explained: Essential Steps for Effective Data Management

Pickl AI

Summary: The ETL process, which consists of data extraction, transformation, and loading, is vital for effective data management. Following best practices and using suitable tools enhances data integrity and quality, supporting informed decision-making. Introduction The ETL process is crucial in modern data management.

ETL 52
article thumbnail

A Beginner’s Guide to Data Warehousing

Unite.AI

They can contain structured, unstructured, or semi-structured data. These can include structured databases, log files, CSV files, transaction tables, third-party business tools, sensor data, etc. The data ecosystem is connected to company-defined data sources that can ingest historical data after a specified period.

Metadata 162
article thumbnail

Data architecture strategy for data quality

IBM Journey to AI blog

The right data architecture can help your organization improve data quality because it provides the framework that determines how data is collected, transported, stored, secured, used and shared for business intelligence and data science use cases.