Remove Automation Remove Data Ingestion Remove ETL
article thumbnail

Most Frequently Asked Azure Data Factory Interview Questions

Analytics Vidhya

Introduction Azure data factory (ADF) is a cloud-based data ingestion and ETL (Extract, Transform, Load) tool. The data-driven workflow in ADF orchestrates and automates data movement and data transformation.

ETL 283
article thumbnail

Han Heloir, MongoDB: The role of scalable databases in AI-powered apps

AI News

Here are a few key reasons: The variety and volume of data will continue to grow, requiring the database to handle diverse data types—structured, unstructured, and semi-structured—at scale. Selecting a database that can manage such variety without complex ETL processes is important.

Big Data 310
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Basil Faruqui, BMC: Why DataOps needs orchestration to make it work

AI News

“If you think about building a data pipeline, whether you’re doing a simple BI project or a complex AI or machine learning project, you’ve got data ingestion, data storage and processing, and data insight – and underneath all of those four stages, there’s a variety of different technologies being used,” explains Faruqui.

article thumbnail

List of ETL Tools: Explore the Top ETL Tools for 2025

Pickl AI

Summary: This guide explores the top list of ETL tools, highlighting their features and use cases. It provides insights into considerations for choosing the right tool, ensuring businesses can optimize their data integration processes for better analytics and decision-making. What is ETL? What are ETL Tools?

ETL 52
article thumbnail

A Comprehensive Overview of Data Engineering Pipeline Tools

Marktechpost

This involves a series of semi-automated or automated operations implemented through data engineering pipeline frameworks. Strengths: It offers parallel processing, flexibility, and built-in capabilities for various data tasks, including graph processing. Weaknesses: Steep learning curve, especially during initial setup.

ETL 130
article thumbnail

What is Data Ingestion? Understanding the Basics

Pickl AI

Summary: Data ingestion is the process of collecting, importing, and processing data from diverse sources into a centralised system for analysis. This crucial step enhances data quality, enables real-time insights, and supports informed decision-making. This is where data ingestion comes in.

article thumbnail

How Rocket Companies modernized their data science solution on AWS

AWS Machine Learning Blog

Rockets legacy data science environment challenges Rockets previous data science solution was built around Apache Spark and combined the use of a legacy version of the Hadoop environment and vendor-provided Data Science Experience development tools. Rockets legacy data science architecture is shown in the following diagram.