Remove ML Engineer Remove Neural Network Remove Software Engineer
article thumbnail

20 Must-Attend Sessions at ODSC East 2025: The Future of Agentic and Applied AI

ODSC - Open Data Science

Adaptive RAG Systems with Knowledge Graphs: Building Smarter LLM Pipelines David vonThenen, Senior AI/ML Engineer at DigitalOcean Unlock the full potential of Retrieval-Augmented Generation by embedding adaptive reasoning with knowledge graphs.

article thumbnail

How to Learn AI

Towards AI

Common mistakes and misconceptions about learning AI/ML Markus Spiske on Unsplash A common misconception of beginners is that they can learn AI/ML from a few tutorials that implement the latest algorithms, so I thought I would share some notes and advice on learning AI. Trying to code ML algorithms from scratch.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Getting Started with AI

Towards AI

What is AI Engineering AI Engineering is a new discipline focused on developing tools, systems, and processes to enable the application of artificial intelligence in real-world contexts [1]. In a nutshell, AI Engineering is the application of software engineering best practices to the field of AI. Bourque and R.

article thumbnail

First ODSC Europe 2023 Sessions Announced

ODSC - Open Data Science

ML Governance: A Lean Approach Ryan Dawson | Principal Data Engineer | Thoughtworks Meissane Chami | Senior ML Engineer | Thoughtworks During this session, you’ll discuss the day-to-day realities of ML Governance. Scaling AI/ML Workloads with Ray Kai Fricke | Senior Software Engineer | Anyscale Inc.

article thumbnail

Must-Have Skills for a Machine Learning Engineer

Pickl AI

Fundamental Programming Skills Strong programming skills are essential for success in ML. This section will highlight the critical programming languages and concepts ML engineers should master, including Python, R , and C++, and an understanding of data structures and algorithms. million by 2030, with a remarkable CAGR of 44.8%

article thumbnail

Where AI is headed in the next 5 years?

Pickl AI

Machine Learning and Neural Networks (1990s-2000s): Machine Learning (ML) became a focal point, enabling systems to learn from data and improve performance without explicit programming. Techniques such as decision trees, support vector machines, and neural networks gained popularity.

article thumbnail

Introducing the Topic Tracks for ODSC East 2025: Spotlight on Gen AI, AI Agents, LLMs, & More

ODSC - Open Data Science

Topics Include: Agentic AI DesignPatterns LLMs & RAG forAgents Agent Architectures &Chaining Evaluating AI Agent Performance Building with LangChain and LlamaIndex Real-World Applications of Autonomous Agents Who Should Attend: Data Scientists, Developers, AI Architects, and ML Engineers seeking to build cutting-edge autonomous systems.