Remove Metadata Remove ML Remove ML Engineer
article thumbnail

Governing the ML lifecycle at scale, Part 1: A framework for architecting ML workloads using Amazon SageMaker

AWS Machine Learning Blog

Customers of every size and industry are innovating on AWS by infusing machine learning (ML) into their products and services. Recent developments in generative AI models have further sped up the need of ML adoption across industries.

ML 134
article thumbnail

From Solo Notebooks to Collaborative Powerhouse: VS Code Extensions for Data Science and ML Teams

Towards AI

From Solo Notebooks to Collaborative Powerhouse: VS Code Extensions for Data Science and ML Teams Photo by Parabol | The Agile Meeting Toolbox on Unsplash In this article, we will explore the essential VS Code extensions that enhance productivity and collaboration for data scientists and machine learning (ML) engineers.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Search enterprise data assets using LLMs backed by knowledge graphs

Flipboard

The application needs to search through the catalog and show the metadata information related to all of the data assets that are relevant to the search context. The following diagram illustrates the end-to-end architecture, consisting of the metadata API layer, ingestion pipeline, embedding generation workflow, and frontend UI.

Metadata 149
article thumbnail

Build a robust text-to-SQL solution generating complex queries, self-correcting, and querying diverse data sources

AWS Machine Learning Blog

Structured Query Language (SQL) is a complex language that requires an understanding of databases and metadata. Third, despite the larger adoption of centralized analytics solutions like data lakes and warehouses, complexity rises with different table names and other metadata that is required to create the SQL for the desired sources.

Metadata 138
article thumbnail

Improve governance of models with Amazon SageMaker unified Model Cards and Model Registry

AWS Machine Learning Blog

You can now register machine learning (ML) models in Amazon SageMaker Model Registry with Amazon SageMaker Model Cards , making it straightforward to manage governance information for specific model versions directly in SageMaker Model Registry in just a few clicks.

Metadata 120
article thumbnail

Deploy Amazon SageMaker pipelines using AWS Controllers for Kubernetes

AWS Machine Learning Blog

Its scalability and load-balancing capabilities make it ideal for handling the variable workloads typical of machine learning (ML) applications. Amazon SageMaker provides capabilities to remove the undifferentiated heavy lifting of building and deploying ML models. They often work with DevOps engineers to operate those pipelines.

DevOps 114
article thumbnail

Data4ML Preparation Guidelines (Beyond The Basics)

Towards AI

Data preparation isn’t just a part of the ML engineering process — it’s the heart of it. Data is a key differentiator in ML projects (more on this in my blog post below). This post dives into key steps for preparing data to build real-world ML systems. This member-only story is on us. Upgrade to access all of Medium.