Remove Metadata Remove ML Remove ML Engineer
article thumbnail

From Solo Notebooks to Collaborative Powerhouse: VS Code Extensions for Data Science and ML Teams

Towards AI

From Solo Notebooks to Collaborative Powerhouse: VS Code Extensions for Data Science and ML Teams Photo by Parabol | The Agile Meeting Toolbox on Unsplash In this article, we will explore the essential VS Code extensions that enhance productivity and collaboration for data scientists and machine learning (ML) engineers.

article thumbnail

Governing the ML lifecycle at scale, Part 1: A framework for architecting ML workloads using Amazon SageMaker

AWS Machine Learning Blog

Customers of every size and industry are innovating on AWS by infusing machine learning (ML) into their products and services. Recent developments in generative AI models have further sped up the need of ML adoption across industries.

ML 126
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Customized model monitoring for near real-time batch inference with Amazon SageMaker

AWS Machine Learning Blog

Real-world applications vary in inference requirements for their artificial intelligence and machine learning (AI/ML) solutions to optimize performance and reduce costs. SageMaker Model Monitor monitors the quality of SageMaker ML models in production. Your client applications invoke this endpoint to get inferences from the model.

ML 105
article thumbnail

Advanced tracing and evaluation of generative AI agents using LangChain and Amazon SageMaker AI MLFlow

AWS Machine Learning Blog

This post explores how Amazon SageMaker AI with MLflow can help you as a developer and a machine learning (ML) practitioner efficiently experiment, evaluate generative AI agent performance, and optimize their applications for production readiness.

article thumbnail

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

AWS Machine Learning Blog

We recently announced the general availability of cross-account sharing of Amazon SageMaker Model Registry using AWS Resource Access Manager (AWS RAM) , making it easier to securely share and discover machine learning (ML) models across your AWS accounts.

ML 94
article thumbnail

Track LLM model evaluation using Amazon SageMaker managed MLflow and FMEval

AWS Machine Learning Blog

FMEval is an open source LLM evaluation library, designed to provide data scientists and machine learning (ML) engineers with a code-first experience to evaluate LLMs for various aspects, including accuracy, toxicity, fairness, robustness, and efficiency. This allows you to keep track of your ML experiments.

LLM 101
article thumbnail

Data4ML Preparation Guidelines (Beyond The Basics)

Towards AI

Data preparation isn’t just a part of the ML engineering process — it’s the heart of it. Data is a key differentiator in ML projects (more on this in my blog post below). This post dives into key steps for preparing data to build real-world ML systems. This member-only story is on us. Upgrade to access all of Medium.