Remove Explainable AI Remove Natural Language Processing Remove Neural Network
article thumbnail

Enhancing AI Transparency and Trust with Composite AI

Unite.AI

Composite AI is a cutting-edge approach to holistically tackling complex business problems. These techniques include Machine Learning (ML), deep learning , Natural Language Processing (NLP) , Computer Vision (CV) , descriptive statistics, and knowledge graphs. Decision trees and rule-based models like CART and C4.5

article thumbnail

Neural Network in Machine Learning

Pickl AI

Summary: Neural networks are a key technique in Machine Learning, inspired by the human brain. Different types of neural networks, such as feedforward, convolutional, and recurrent networks, are designed for specific tasks like image recognition, Natural Language Processing, and sequence modelling.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Artificial Neural Network: A Comprehensive Guide

Pickl AI

Summary: Artificial Neural Network (ANNs) are computational models inspired by the human brain, enabling machines to learn from data. Introduction Artificial Neural Network (ANNs) have emerged as a cornerstone of Artificial Intelligence and Machine Learning , revolutionising how computers process information and learn from data.

article thumbnail

The Evolving Landscape of Generative AI: A Survey of Mixture of Experts, Multimodality, and the Quest for AGI

Unite.AI

The Evolution of AI Research As capabilities have grown, research trends and priorities have also shifted, often corresponding with technological milestones. The rise of deep learning reignited interest in neural networks, while natural language processing surged with ChatGPT-level models.

article thumbnail

CoSy (Concept Synthesis): A Novel Architecture-Agnostic Machine Learning Framework to Evaluate the Quality of Textual Explanations for Latent Neurons

Marktechpost

Modern Deep Neural Networks (DNNs) are inherently opaque; we do not know how or why these computers arrive at the predictions they do. An emerging area of study called Explainable AI (XAI) has arisen to shed light on how DNNs make decisions in a way that humans can comprehend.

article thumbnail

Deciphering Transformer Language Models: Advances in Interpretability Research

Marktechpost

Consequently, there’s been a notable uptick in research within the natural language processing (NLP) community, specifically targeting interpretability in language models, yielding fresh insights into their internal operations. Recent approaches automate circuit discovery, enhancing interpretability.

article thumbnail

Quanda: A New Python Toolkit for Standardized Evaluation and Benchmarking of Training Data Attribution (TDA) in Explainable AI

Marktechpost

XAI, or Explainable AI, brings about a paradigm shift in neural networks that emphasizes the need to explain the decision-making processes of neural networks, which are well-known black boxes. Check out the Paper and GitHub. All credit for this research goes to the researchers of this project.