Remove ETL Remove ML Engineer Remove Natural Language Processing
article thumbnail

Streamlining ETL data processing at Talent.com with Amazon SageMaker

AWS Machine Learning Blog

Our pipeline belongs to the general ETL (extract, transform, and load) process family that combines data from multiple sources into a large, central repository. The solution does not require porting the feature extraction code to use PySpark, as required when using AWS Glue as the ETL solution. session.Session().region_name

ETL 100
article thumbnail

FMOps/LLMOps: Operationalize generative AI and differences with MLOps

AWS Machine Learning Blog

These teams are as follows: Advanced analytics team (data lake and data mesh) – Data engineers are responsible for preparing and ingesting data from multiple sources, building ETL (extract, transform, and load) pipelines to curate and catalog the data, and prepare the necessary historical data for the ML use cases.

article thumbnail

Working as a Data Scientist?—?expectation versus reality!

Mlearning.ai

During my MS, I got the opportunity to work on many types of data and ML projects, including web scraping to collect data, parsing big data, building unsupervised ML models, building supervised ML models, creating deep neural networks, working with text data using Natural Language Processing, and with speech data using audio processing techniques.