Remove ETL Remove Generative AI Remove Metadata
article thumbnail

Han Heloir, MongoDB: The role of scalable databases in AI-powered apps

AI News

Ahead of AI & Big Data Expo Europe , Han Heloir, EMEA gen AI senior solutions architect at MongoDB , discusses the future of AI-powered applications and the role of scalable databases in supporting generative AI and enhancing business processes. That is the uncomfortable truth about the current situation.

Big Data 311
article thumbnail

Evaluate large language models for your machine translation tasks on AWS

AWS Machine Learning Blog

When using the FAISS adapter, translation units are stored into a local FAISS index along with the metadata. The request is sent to the prompt generator. You can enhance this technique by using metadata-driven filtering to collect the relevant pairs according to the source text. Cohere Embed supports 108 languages.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Tackling AI’s data challenges with IBM databases on AWS

IBM Journey to AI blog

The solution: IBM databases on AWS To solve for these challenges, IBM’s portfolio of SaaS database solutions on Amazon Web Services (AWS), enables enterprises to scale applications, analytics and AI across the hybrid cloud landscape. This allows you to scale all analytics and AI workloads across the enterprise with trusted data. 

ETL 234
article thumbnail

Ground truth generation and review best practices for evaluating generative AI question-answering with FMEval

AWS Machine Learning Blog

Generative AI question-answering applications are pushing the boundaries of enterprise productivity. These assistants can be powered by various backend architectures including Retrieval Augmented Generation (RAG), agentic workflows, fine-tuned large language models (LLMs), or a combination of these techniques.

article thumbnail

FMOps/LLMOps: Operationalize generative AI and differences with MLOps

AWS Machine Learning Blog

Nowadays, the majority of our customers is excited about large language models (LLMs) and thinking how generative AI could transform their business. In this post, we discuss how to operationalize generative AI applications using MLOps principles leading to foundation model operations (FMOps).

article thumbnail

Exploring the AI and data capabilities of watsonx

IBM Journey to AI blog

is our enterprise-ready next-generation studio for AI builders, bringing together traditional machine learning (ML) and new generative AI capabilities powered by foundation models. With watsonx.ai, businesses can effectively train, validate, tune and deploy AI models with confidence and at scale across their enterprise.

article thumbnail

AI that’s ready for business starts with data that’s ready for AI

IBM Journey to AI blog

By 2026, over 80% of enterprises will deploy AI APIs or generative AI applications. AI models and the data on which they’re trained and fine-tuned can elevate applications from generic to impactful, offering tangible value to customers and businesses.