This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Training Sessions Bayesian Analysis of Survey Data: Practical Modeling withPyMC Allen Downey, PhD, Principal DataScientist at PyMCLabs Alexander Fengler, Postdoctoral Researcher at Brown University Bayesian methods offer a flexible and powerful approach to regression modeling, and PyMC is the go-to library for Bayesian inference in Python.
Because the machine learning lifecycle has many complex components that reach across multiple teams, it requires close-knit collaboration to ensure that hand-offs occur efficiently, from data preparation and model training to model deployment and monitoring. How to use ML to automate the refining process into a cyclical ML process.
8 Tools to Protect Sensitive Data from Unintended Leakage In order to protect themselves from unintended leakage of sensitive information, organizations employ a variety of tools that scan repositories and code continuously to identify the secrets that are hard-coded within.
True to its name, ExplainableAI refers to the tools and methods that explainAI systems and how they arrive at a certain output. Artificial Intelligence (AI) models assist across various domains, from regression-based forecasting models to complex object detection algorithms in deep learning.
Its goal is to help with a quick analysis of target characteristics, training vs testing data, and other such data characterization tasks. Apache Superset GitHub | Website Apache Superset is a must-try project for any MLengineer, datascientist, or data analyst.
Some popular end-to-end MLOps platforms in 2023 Amazon SageMaker Amazon SageMaker provides a unified interface for data preprocessing, model training, and experimentation, allowing datascientists to collaborate and share code easily. Check out the Kubeflow documentation.
AI Agents TrackHarness the Power of Autonomous Systems AI agents are transforming how businesses operate by performing complex tasks independently, improving productivity and decision-making. Whats Next in AI TrackExplore the Cutting-Edge Stay ahead of the curve with insights into the future of AI.
Job Roles DataScientist, Data Analyst , and Business Analyst are typical roles in Data Science. AIEngineer, Machine Learning Engineer, and Robotics Engineer are prominent roles in AI. MLEngineer, DataScientist, and Research Scientist are typical roles in Machine Learning.
Robotics also witnessed advancements, with AI-powered robots becoming more capable in navigation, manipulation, and interaction with the physical world. ExplainableAI and Ethical Considerations (2010s-present): As AI systems became more complex and influential, concerns about transparency, fairness, and accountability arose.
Machine Learning Engineer with AWS Professional Services. She is passionate about developing, deploying, and explainingAI/ ML solutions across various domains. Prior to this role, she led multiple initiatives as a datascientist and MLengineer with top global firms in the financial and retail space.
Getting a workflow ready which takes your data from its raw form to predictions while maintaining responsiveness and flexibility is the real deal. At that point, the DataScientists or MLEngineers become curious and start looking for such implementations.
We organize all of the trending information in your field so you don't have to. Join 15,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content