Remove Data Science Remove Metadata Remove ML Engineer
article thumbnail

From Solo Notebooks to Collaborative Powerhouse: VS Code Extensions for Data Science and ML Teams

Towards AI

From Solo Notebooks to Collaborative Powerhouse: VS Code Extensions for Data Science and ML Teams Photo by Parabol | The Agile Meeting Toolbox on Unsplash In this article, we will explore the essential VS Code extensions that enhance productivity and collaboration for data scientists and machine learning (ML) engineers.

article thumbnail

Build a robust text-to-SQL solution generating complex queries, self-correcting, and querying diverse data sources

AWS Machine Learning Blog

Structured Query Language (SQL) is a complex language that requires an understanding of databases and metadata. The solution in this post aims to bring enterprise analytics operations to the next level by shortening the path to your data using natural language. Today, generative AI can enable people without SQL knowledge.

Metadata 138
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data4ML Preparation Guidelines (Beyond The Basics)

Towards AI

Data preparation isn’t just a part of the ML engineering process — it’s the heart of it. Photo by Myriam Jessier on Unsplash To set the stage, let’s examine the nuances between research-phase data and production-phase data. Writing Output: Centralizing data into a structure, like a delta table.

article thumbnail

Governing the ML lifecycle at scale, Part 1: A framework for architecting ML workloads using Amazon SageMaker

AWS Machine Learning Blog

Data scientists search and pull features from the central feature store catalog, build models through experiments, and select the best model for promotion. Data scientists create and share new features into the central feature store catalog for reuse.

ML 131
article thumbnail

MLOps Landscape in 2023: Top Tools and Platforms

The MLOps Blog

With built-in components and integration with Google Cloud services, Vertex AI simplifies the end-to-end machine learning process, making it easier for data science teams to build and deploy models at scale. Metaflow Metaflow helps data scientists and machine learning engineers build, manage, and deploy data science projects.

article thumbnail

Machine Learning Engineering in the Real World

ODSC - Open Data Science

Secondly, to be a successful ML engineer in the real world, you cannot just understand the technology; you must understand the business. We should start by considering the broad elements that should constitute any ML solution, as indicated in the following diagram: Figure 1.2:

article thumbnail

Improve governance of models with Amazon SageMaker unified Model Cards and Model Registry

AWS Machine Learning Blog

You can now register machine learning (ML) models in Amazon SageMaker Model Registry with Amazon SageMaker Model Cards , making it straightforward to manage governance information for specific model versions directly in SageMaker Model Registry in just a few clicks.

Metadata 111