article thumbnail

David Driggers, CTO of Cirrascale – Interview Series

Unite.AI

Enterprise-wide AI adoption faces barriers like data quality, infrastructure constraints, and high costs. While Cirrascale does not offer Data Quality type services, we do partner with companies that can assist with Data issues. How does Cirrascale address these challenges for businesses scaling AI initiatives?

article thumbnail

LLM Agents Underscore One Truth: Data Is The Real Differentiator.

Towards AI

. — Peter Norvig, The Unreasonable Effectiveness of Data. Edited Photo by Taylor Vick on Unsplash In ML engineering, data quality isn’t just critical — it’s foundational. Since 2011, Peter Norvig’s words underscore the power of a data-centric approach in machine learning. Using biased or low-quality data?

LLM 126
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

DeepSeek in My Engineer’s Eyes

Towards AI

In this post, I want to shift the conversation to how Deepseek is redefining the future of machine learning engineering. It has already inspired me to set new goals for 2025, and I hope it can do the same for other ML engineers. It is fascinating what Deepseek has achieved with their top noche engineering skill.

article thumbnail

Revolutionizing clinical trials with the power of voice and AI

AWS Machine Learning Blog

Regulatory compliance By integrating the extracted insights and recommendations into clinical trial management systems and EHRs, this approach facilitates compliance with regulatory requirements for data capture, adverse event reporting, and trial monitoring. He helps customers implement big data, machine learning, and analytics solutions.

LLM 99
article thumbnail

The Weather Company enhances MLOps with Amazon SageMaker, AWS CloudFormation, and Amazon CloudWatch

AWS Machine Learning Blog

TWCo data scientists and ML engineers took advantage of automation, detailed experiment tracking, integrated training, and deployment pipelines to help scale MLOps effectively. The Data Quality Check part of the pipeline creates baseline statistics for the monitoring task in the inference pipeline.

article thumbnail

Track LLM model evaluation using Amazon SageMaker managed MLflow and FMEval

AWS Machine Learning Blog

Furthermore, evaluation processes are important not only for LLMs, but are becoming essential for assessing prompt template quality, input data quality, and ultimately, the entire application stack. In this post, we show how to use FMEval and Amazon SageMaker to programmatically evaluate LLMs.

LLM 91
article thumbnail

How Axfood enables accelerated machine learning throughout the organization using Amazon SageMaker

AWS Machine Learning Blog

However, there are many clear benefits of modernizing our ML platform and moving to Amazon SageMaker Studio and Amazon SageMaker Pipelines. Monitoring – Continuous surveillance completes checks for drifts related to data quality, model quality, and feature attribution. Workflow B corresponds to model quality drift checks.