Remove Data Quality Remove Information Remove Metadata
article thumbnail

Narrowing the confidence gap for wider AI adoption

AI News

The best way to overcome this hurdle is to go back to data basics. Organisations need to build a strong data governance strategy from the ground up, with rigorous controls that enforce data quality and integrity. The best way to reduce the risks is to limit access to sensitive data.

article thumbnail

Data integrity vs. data quality: Is there a difference?

IBM Journey to AI blog

When we talk about data integrity, we’re referring to the overarching completeness, accuracy, consistency, accessibility, and security of an organization’s data. Together, these factors determine the reliability of the organization’s data. Data quality Data quality is essentially the measure of data integrity.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Inna Tokarev Sela, CEO and Founder of illumex – Interview Series

Unite.AI

Illumex enables organizations to deploy genAI analytics agents by translating scattered, cryptic data into meaningful, context-rich business language with built-in governance. By creating business terms, suggesting metrics, and identifying potential conflicts, Illumex ensures data governance at the highest standards.

article thumbnail

Governing the ML lifecycle at scale, Part 3: Setting up data governance at scale

Flipboard

It serves as the hub for defining and enforcing data governance policies, data cataloging, data lineage tracking, and managing data access controls across the organization. Data lake account (producer) – There can be one or more data lake accounts within the organization.

ML 130
article thumbnail

Metadata: 5 reasons why you should understand its analytical value

SAS Software

However, before you get the answers, you need to know where to find the data and if the data fits your purpose. Traditional metadata solutions focus on understanding how data and processes in a deployment relate to each other and how process changes [.]

Metadata 104
article thumbnail

9 data governance strategies that will unlock the potential of your business data

IBM Journey to AI blog

Everything is data—digital messages, emails, customer information, contracts, presentations, sensor data—virtually anything humans interact with can be converted into data, analyzed for insights or transformed into a product. Managing this level of oversight requires adept handling of large volumes of data.

Metadata 188
article thumbnail

Level up your Kafka applications with schemas

IBM Journey to AI blog

Apache Kafka transfers data without validating the information in the messages. It does not have any visibility of what kind of data are being sent and received, or what data types it might contain. Kafka does not examine the metadata of your messages. What’s next?