Remove Data Platform Remove Data Scientist Remove DevOps
article thumbnail

How Rocket Companies modernized their data science solution on AWS

AWS Machine Learning Blog

Steep learning curve for data scientists: Many of Rockets data scientists did not have experience with Spark, which had a more nuanced programming model compared to other popular ML solutions like scikit-learn. This created a challenge for data scientists to become productive.

article thumbnail

How iFood built a platform to run hundreds of machine learning models with Amazon SageMaker Inference

AWS Machine Learning Blog

Solution overview The following diagram illustrates iFoods legacy architecture, which had separate workflows for data science and engineering teams, creating challenges in efficiently deploying accurate, real-time machine learning models into production systems. The ML platform empowers the building and evolution of ML systems.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Accelerating AI/ML development at BMW Group with Amazon SageMaker Studio

Flipboard

In an increasingly digital and rapidly changing world, BMW Group’s business and product development strategies rely heavily on data-driven decision-making. With that, the need for data scientists and machine learning (ML) engineers has grown significantly.

ML 151
article thumbnail

How Axfood enables accelerated machine learning throughout the organization using Amazon SageMaker

AWS Machine Learning Blog

Axfood has a structure with multiple decentralized data science teams with different areas of responsibility. Together with a central data platform team, the data science teams bring innovation and digital transformation through AI and ML solutions to the organization.

article thumbnail

Foundational models at the edge

IBM Journey to AI blog

These include data ingestion, data selection, data pre-processing, FM pre-training, model tuning to one or more downstream tasks, inference serving, and data and AI model governance and lifecycle management—all of which can be described as FMOps. IBM watsonx consists of the following: IBM watsonx.ai

article thumbnail

Governing the ML lifecycle at scale, Part 1: A framework for architecting ML workloads using Amazon SageMaker

AWS Machine Learning Blog

The architecture maps the different capabilities of the ML platform to AWS accounts. The functional architecture with different capabilities is implemented using a number of AWS services, including AWS Organizations , SageMaker, AWS DevOps services, and a data lake.

ML 130
article thumbnail

How Aviva built a scalable, secure, and reliable MLOps platform using Amazon SageMaker

AWS Machine Learning Blog

This approach led to data scientists spending more than 50% of their time on operational tasks, leaving little room for innovation, and posed challenges in monitoring model performance in production. This feature integrates with Amazon SageMaker Experiments to provide data scientists with insights into the tuning process.

DevOps 93