Remove Data Platform Remove Data Science Remove ML Engineer
article thumbnail

MakeBlobs + Fictional Synthetic Data, Adding Data to Domain-Specific LLMs, and What Tech Layoffs…

ODSC - Open Data Science

How to Add Domain-Specific Knowledge to an LLM Based on Your Data In this article, we will explore one of several strategies and techniques to infuse domain knowledge into LLMs, allowing them to perform at their best within specific professional contexts by adding chunks of documentation into an LLM as context when injecting the query.

article thumbnail

Governing the ML lifecycle at scale, Part 1: A framework for architecting ML workloads using Amazon SageMaker

AWS Machine Learning Blog

Data scientists search and pull features from the central feature store catalog, build models through experiments, and select the best model for promotion. Data scientists create and share new features into the central feature store catalog for reuse.

ML 116
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Accelerating AI/ML development at BMW Group with Amazon SageMaker Studio

Flipboard

With that, the need for data scientists and machine learning (ML) engineers has grown significantly. Data scientists and ML engineers require capable tooling and sufficient compute for their work. JuMa is now available to all data scientists, ML engineers, and data analysts at BMW Group.

ML 153
article thumbnail

How Axfood enables accelerated machine learning throughout the organization using Amazon SageMaker

AWS Machine Learning Blog

Axfood has a structure with multiple decentralized data science teams with different areas of responsibility. Together with a central data platform team, the data science teams bring innovation and digital transformation through AI and ML solutions to the organization.

article thumbnail

Machine Learning Operations (MLOPs) with Azure Machine Learning

ODSC - Open Data Science

Machine Learning Operations (MLOps) can significantly accelerate how data scientists and ML engineers meet organizational needs. A well-implemented MLOps process not only expedites the transition from testing to production but also offers ownership, lineage, and historical data about ML artifacts used within the team.

article thumbnail

The Future of Data-Centric AI Day 2: Snorkel Flow and Beyond

Snorkel AI

Snorkel AI wrapped the second day of our The Future of Data-Centric AI virtual conference by showcasing how Snorkel’s data-centric platform has enabled customers to succeed, taking a deep look at Snorkel Flow’s capabilities, and announcing two new solutions.

article thumbnail

The Future of Data-Centric AI Day 2: Snorkel Flow and Beyond

Snorkel AI

Snorkel AI wrapped the second day of our The Future of Data-Centric AI virtual conference by showcasing how Snorkel’s data-centric platform has enabled customers to succeed, taking a deep look at Snorkel Flow’s capabilities, and announcing two new solutions.