This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Can you share the story behind the creation of the VDURA DataPlatform and the key challenges you aimed to address in the AI and HPC landscape? The VDURA DataPlatform was developed to address a critical and growing gap in data infrastructure for AI and HPC workloads: balancing high performance with enterprise-grade durability.
As a result, it’s easier to find problems with data quality, inconsistencies, and outliers in the dataset. Metadata analysis is the first step in establishing the association, and subsequent steps involve refining the relationships between individual database variables. The 18 best data profiling tools are listed below.
Falling into the wrong hands can lead to the illicit use of this data. Hence, adopting a DataPlatform that assures complete data security and governance for an organization becomes paramount. In this blog, we are going to discuss more on What are Dataplatforms & Data Governance.
The first generation of data architectures represented by enterprise data warehouse and business intelligence platforms were characterized by thousands of ETL jobs, tables, and reports that only a small group of specialized data engineers understood, resulting in an under-realized positive impact on the business.
Among those algorithms, deep/neural networks are more suitable for e-commerce forecasting problems as they accept item metadata features, forward-looking features for campaign and marketing activities, and – most importantly – related time series features. He loves combining open-source projects with cloud services.
In this post, we demonstrate how data aggregated within the AWS CCI Post Call Analytics solution allowed Principal to gain visibility into their contact center interactions, better understand the customer journey, and improve the overall experience between contact channels while also maintaining dataintegrity and security.
Cloud-based data storage solutions, such as Amazon S3 (Simple Storage Service) and Google Cloud Storage, provide highly durable and scalable repositories for storing large volumes of data. Delta Lake provides ACID transactions, scalable metadata handling, and unifies streaming and batch data processing. Morgan Kaufmann.
There’s no component that stores metadata about this feature store? Mikiko Bazeley: In the case of the literal feature store, all it does is store features and metadata. We’re assuming that data scientists, for the most part, don’t want to write transformations elsewhere. Mikiko Bazeley: 100%.
These are subject-specific subsets of the data warehouse, catering to the specific needs of departments like marketing or sales. They offer a focused selection of data, allowing for faster analysis tailored to departmental goals. Metadata This acts like the data dictionary, providing crucial information about the data itself.
It’s often described as a way to simply increase data access, but the transition is about far more than that. When effectively implemented, a data democracy simplifies the data stack, eliminates data gatekeepers, and makes the company’s comprehensive dataplatform easily accessible by different teams via a user-friendly dashboard.
We organize all of the trending information in your field so you don't have to. Join 15,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content