Remove Data Ingestion Remove ML Engineer Remove Software Engineer
article thumbnail

First ODSC Europe 2023 Sessions Announced

ODSC - Open Data Science

ML Governance: A Lean Approach Ryan Dawson | Principal Data Engineer | Thoughtworks Meissane Chami | Senior ML Engineer | Thoughtworks During this session, you’ll discuss the day-to-day realities of ML Governance. Scaling AI/ML Workloads with Ray Kai Fricke | Senior Software Engineer | Anyscale Inc.

article thumbnail

Introducing the Topic Tracks for ODSC East 2025: Spotlight on Gen AI, AI Agents, LLMs, & More

ODSC - Open Data Science

Topics Include: Agentic AI DesignPatterns LLMs & RAG forAgents Agent Architectures &Chaining Evaluating AI Agent Performance Building with LangChain and LlamaIndex Real-World Applications of Autonomous Agents Who Should Attend: Data Scientists, Developers, AI Architects, and ML Engineers seeking to build cutting-edge autonomous systems.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Deliver your first ML use case in 8–12 weeks

AWS Machine Learning Blog

The first is by using low-code or no-code ML services such as Amazon SageMaker Canvas , Amazon SageMaker Data Wrangler , Amazon SageMaker Autopilot , and Amazon SageMaker JumpStart to help data analysts prepare data, build models, and generate predictions. He has a background in software engineering and AI research.

ML 107
article thumbnail

Up Your Machine Learning Game With These ODSC East 2024 Sessions

ODSC - Open Data Science

By the end of this session, you’ll have a practical blueprint to efficiently harness feature stores within ML workflows. Using Graphs for Large Feature Engineering Pipelines Wes Madrigal | ML Engineer | Mad Consulting Feature engineering from raw entity-level data is complex, but there are ways to reduce that complexity.

article thumbnail

Machine Learning Operations (MLOPs) with Azure Machine Learning

ODSC - Open Data Science

Machine Learning Operations (MLOps) can significantly accelerate how data scientists and ML engineers meet organizational needs. A well-implemented MLOps process not only expedites the transition from testing to production but also offers ownership, lineage, and historical data about ML artifacts used within the team.

article thumbnail

MLOps Landscape in 2023: Top Tools and Platforms

The MLOps Blog

Core features of end-to-end MLOps platforms End-to-end MLOps platforms combine a wide range of essential capabilities and tools, which should include: Data management and preprocessing : Provide capabilities for data ingestion, storage, and preprocessing, allowing you to efficiently manage and prepare data for training and evaluation.

article thumbnail

How to Build an End-To-End ML Pipeline

The MLOps Blog

One of the most prevalent complaints we hear from ML engineers in the community is how costly and error-prone it is to manually go through the ML workflow of building and deploying models. Building end-to-end machine learning pipelines lets ML engineers build once, rerun, and reuse many times. Data preprocessing.

ML 98