Remove Data Ingestion Remove ML Engineer Remove NLP
article thumbnail

Introducing the Topic Tracks for ODSC East 2025: Spotlight on Gen AI, AI Agents, LLMs, & More

ODSC - Open Data Science

Topics Include: Agentic AI DesignPatterns LLMs & RAG forAgents Agent Architectures &Chaining Evaluating AI Agent Performance Building with LangChain and LlamaIndex Real-World Applications of Autonomous Agents Who Should Attend: Data Scientists, Developers, AI Architects, and ML Engineers seeking to build cutting-edge autonomous systems.

article thumbnail

Machine Learning Operations (MLOPs) with Azure Machine Learning

ODSC - Open Data Science

Machine Learning Operations (MLOps) can significantly accelerate how data scientists and ML engineers meet organizational needs. A well-implemented MLOps process not only expedites the transition from testing to production but also offers ownership, lineage, and historical data about ML artifacts used within the team.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

ML Pipeline Architecture Design Patterns (With 10 Real-World Examples)

The MLOps Blog

Getting a workflow ready which takes your data from its raw form to predictions while maintaining responsiveness and flexibility is the real deal. At that point, the Data Scientists or ML Engineers become curious and start looking for such implementations. 1 Data Ingestion (e.g.,

ML 52
article thumbnail

Definite Guide to Building a Machine Learning Platform

The MLOps Blog

From gathering and processing data to building models through experiments, deploying the best ones, and managing them at scale for continuous value in production—it’s a lot. As the number of ML-powered apps and services grows, it gets overwhelming for data scientists and ML engineers to build and deploy models at scale.

article thumbnail

Dive deep into vector data stores using Amazon Bedrock Knowledge Bases

AWS Machine Learning Blog

Data lineage and auditing – Metadata can provide information about the provenance and lineage of documents, such as the source system, data ingestion pipeline, or other transformations applied to the data. This information can be valuable for data governance, auditing, and compliance purposes.