Remove Data Ingestion Remove Definition Remove ML Engineer
article thumbnail

Airbnb Researchers Develop Chronon: A Framework for Developing Production-Grade Features for Machine Learning Models

Marktechpost

In the ever-evolving landscape of machine learning, feature management has emerged as a key pain point for ML Engineers at Airbnb. Airbnb recognized the need for a solution that could streamline feature data management, provide real-time updates, and ensure consistency between training and production environments.

article thumbnail

How Axfood enables accelerated machine learning throughout the organization using Amazon SageMaker

AWS Machine Learning Blog

The SageMaker project template includes seed code corresponding to each step of the build and deploy pipelines (we discuss these steps in more detail later in this post) as well as the pipeline definition—the recipe for how the steps should be run. Pavel Maslov is a Senior DevOps and ML engineer in the Analytic Platforms team.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Orchestrate Ray-based machine learning workflows using Amazon SageMaker

AWS Machine Learning Blog

Data scientists have to address challenges like data partitioning, load balancing, fault tolerance, and scalability. ML engineers must handle parallelization, scheduling, faults, and retries manually, requiring complex infrastructure code. Ingest the prepared data into the feature group by using the Boto3 SDK.

article thumbnail

Machine Learning Operations (MLOPs) with Azure Machine Learning

ODSC - Open Data Science

Machine Learning Operations (MLOps) can significantly accelerate how data scientists and ML engineers meet organizational needs. A well-implemented MLOps process not only expedites the transition from testing to production but also offers ownership, lineage, and historical data about ML artifacts used within the team.

article thumbnail

ML Pipeline Architecture Design Patterns (With 10 Real-World Examples)

The MLOps Blog

Getting a workflow ready which takes your data from its raw form to predictions while maintaining responsiveness and flexibility is the real deal. At that point, the Data Scientists or ML Engineers become curious and start looking for such implementations. 1 Data Ingestion (e.g.,

ML 52
article thumbnail

Definite Guide to Building a Machine Learning Platform

The MLOps Blog

From gathering and processing data to building models through experiments, deploying the best ones, and managing them at scale for continuous value in production—it’s a lot. As the number of ML-powered apps and services grows, it gets overwhelming for data scientists and ML engineers to build and deploy models at scale.