This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
The first generation of data architectures represented by enterprise data warehouse and business intelligence platforms were characterized by thousands of ETL jobs, tables, and reports that only a small group of specialized data engineers understood, resulting in an under-realized positive impact on the business.
Falling into the wrong hands can lead to the illicit use of this data. Hence, adopting a DataPlatform that assures complete data security and governance for an organization becomes paramount. In this blog, we are going to discuss more on What are Dataplatforms & Data Governance.
The teams built a new dataingestion mechanism, allowing the CTR files to be jointly delivered with the audio file to an S3 bucket. Principal and AWS collaborated on a new AWS Lambda function that was added to the Step Functions workflow.
A feature store is a dataplatform that supports the creation and use of feature data throughout the lifecycle of an ML model, from creating features that can be reused across many models to model training to model inference (making predictions). It can also transform incoming data on the fly. What is a feature store?
Arranging Efficient Data Streams Modern companies typically receive data from multiple sources. Therefore, quick dataingestion for instant use can be challenging. Furthermore, a shared-data approach stems from this efficient combination. Superior data protection.
Tools range from dataplatforms to vector databases, embedding providers, fine-tuning platforms, prompt engineering, evaluation tools, orchestration frameworks, observability platforms, and LLM API gateways. Model management Teams typically manage their models, including versioning and metadata.
To make that possible, your data scientists would need to store enough details about the environment the model was created in and the related metadata so that the model could be recreated with the same or similar outcomes. You need to build your ML platform with experimentation and general workflow reproducibility in mind.
We organize all of the trending information in your field so you don't have to. Join 15,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content