Remove Data Ingestion Remove Data Platform Remove Machine Learning
article thumbnail

Re-evaluating data management in the generative AI age

IBM Journey to AI blog

For example: Validating and creating data protection capabilities : Data platforms must be prepped for higher levels of protection and monitoring. Data discovery and cataloging tools can assist but should be augmented to make the classification specific to the organization’s understanding of its own data.

article thumbnail

How Axfood enables accelerated machine learning throughout the organization using Amazon SageMaker

AWS Machine Learning Blog

In this post, we share how Axfood, a large Swedish food retailer, improved operations and scalability of their existing artificial intelligence (AI) and machine learning (ML) operations by prototyping in close collaboration with AWS experts and using Amazon SageMaker. This is a guest post written by Axfood AB.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Databricks + Snorkel Flow: integrated, streamlined AI development

Snorkel AI

In todays fast-paced AI landscape, seamless integration between data platforms and AI development tools is critical. At Snorkel, weve partnered with Databricks to create a powerful synergy between their data lakehouse and our Snorkel Flow AI data development platform.

article thumbnail

How Rocket Companies modernized their data science solution on AWS

AWS Machine Learning Blog

Data exploration and model development were conducted using well-known machine learning (ML) tools such as Jupyter or Apache Zeppelin notebooks. Apache Hive was used to provide a tabular interface to data stored in HDFS, and to integrate with Apache Spark SQL.

article thumbnail

How to Build Machine Learning Systems With a Feature Store

The MLOps Blog

Training and evaluating models is just the first step toward machine-learning success. For this, we have to build an entire machine-learning system around our models that manages their lifecycle, feeds properly prepared data into them, and sends their output to downstream systems. But what is an ML pipeline?

article thumbnail

Foundational models at the edge

IBM Journey to AI blog

Foundational models (FMs) are marking the beginning of a new era in machine learning (ML) and artificial intelligence (AI) , which is leading to faster development of AI that can be adapted to a wide range of downstream tasks and fine-tuned for an array of applications. Large language models (LLMs) have taken the field of AI by storm.

article thumbnail

Skip Levens, Marketing Director, Media & Entertainment, Quantum – Interview Series

Unite.AI

The company’s approach allows businesses to efficiently handle data growth while ensuring security and flexibility throughout the data lifecycle. Can you provide an overview of Quantum’s approach to AI-driven data management for unstructured data?

ML 195