Remove Data Ingestion Remove Data Platform Remove Data Science
article thumbnail

How Rocket Companies modernized their data science solution on AWS

AWS Machine Learning Blog

Rockets legacy data science environment challenges Rockets previous data science solution was built around Apache Spark and combined the use of a legacy version of the Hadoop environment and vendor-provided Data Science Experience development tools.

article thumbnail

Foundational models at the edge

IBM Journey to AI blog

These include data ingestion, data selection, data pre-processing, FM pre-training, model tuning to one or more downstream tasks, inference serving, and data and AI model governance and lifecycle management—all of which can be described as FMOps. IBM watsonx consists of the following: IBM watsonx.ai

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data architecture strategy for data quality

IBM Journey to AI blog

The right data architecture can help your organization improve data quality because it provides the framework that determines how data is collected, transported, stored, secured, used and shared for business intelligence and data science use cases.

article thumbnail

How Axfood enables accelerated machine learning throughout the organization using Amazon SageMaker

AWS Machine Learning Blog

Axfood has a structure with multiple decentralized data science teams with different areas of responsibility. Together with a central data platform team, the data science teams bring innovation and digital transformation through AI and ML solutions to the organization.

article thumbnail

Machine Learning Operations (MLOPs) with Azure Machine Learning

ODSC - Open Data Science

A well-implemented MLOps process not only expedites the transition from testing to production but also offers ownership, lineage, and historical data about ML artifacts used within the team. For the customer, this helps them reduce the time it takes to bootstrap a new data science project and get it to production.

article thumbnail

Differentiation: Microsoft Fabric vs Power BI

Pickl AI

Whether you aim for comprehensive data integration or impactful visual insights, this comparison will clarify the best fit for your goals. Key Takeaways Microsoft Fabric is a full-scale data platform, while Power BI focuses on visualising insights. Fabric suits large enterprises; Power BI fits team-level reporting needs.

ETL 52
article thumbnail

Drowning in Data? A Data Lake May Be Your Lifesaver

ODSC - Open Data Science

Arjuna Chala, associate vice president, HPCC Systems For those not familiar with the HPCC Systems data lake platform, can you describe your organization and the development history behind HPCC Systems? They were interested in creating a data platform capable of managing a sizable number of datasets.