Remove Data Discovery Remove Data Quality Remove Information
article thumbnail

Five benefits of a data catalog

IBM Journey to AI blog

So, instead of wandering the aisles in hopes you’ll stumble across the book, you can walk straight to it and get the information you want much faster. An enterprise data catalog does all that a library inventory system does – namely streamlining data discovery and access across data sources – and a lot more.

Metadata 130
article thumbnail

Build trust in banking with data lineage

IBM Journey to AI blog

This trust depends on an understanding of the data that inform risk models: where does it come from, where is it being used, and what are the ripple effects of a change? Banks and their employees place trust in their risk models to help ensure the bank maintains liquidity even in the worst of times.

ETL 217
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Why data governance is essential for enterprise AI

IBM Journey to AI blog

So, if we are training a LLM on proprietary data about an enterprise’s customers, we can run into situations where the consumption of that model could be used to leak sensitive information. In-model learning data Many simple AI models have a training phase and then a deployment phase during which training is paused.

article thumbnail

Unfolding the difference between Data Observability and Data Quality

Pickl AI

In this blog, we are going to unfold the two key aspects of data management that is Data Observability and Data Quality. Data is the lifeblood of the digital age. Today, every organization tries to explore the significant aspects of data and its applications.

article thumbnail

AI that’s ready for business starts with data that’s ready for AI

IBM Journey to AI blog

Your data strategy should incorporate databases designed with open and integrated components, allowing for seamless unification and access to data for advanced analytics and AI applications within a data platform. This enables your organization to extract valuable insights and drive informed decision-making.

article thumbnail

What is Data Ingestion? Understanding the Basics

Pickl AI

Summary: Data ingestion is the process of collecting, importing, and processing data from diverse sources into a centralised system for analysis. This crucial step enhances data quality, enables real-time insights, and supports informed decision-making. It supports both batch and real-time processing.

article thumbnail

3 Takeaways from Gartner’s 2018 Data and Analytics Summit

DataRobot Blog

In Rita Sallam’s July 27 research, Augmented Analytics , she writes that “the rise of self-service visual-bases data discovery stimulated the first wave of transition from centrally provisioned traditional BI to decentralized data discovery.” We agree with that.