article thumbnail

Data architecture strategy for data quality

IBM Journey to AI blog

Poor data quality is one of the top barriers faced by organizations aspiring to be more data-driven. Ill-timed business decisions and misinformed business processes, missed revenue opportunities, failed business initiatives and complex data systems can all stem from data quality issues.

article thumbnail

Unfolding the difference between Data Observability and Data Quality

Pickl AI

In this blog, we are going to unfold the two key aspects of data management that is Data Observability and Data Quality. Data is the lifeblood of the digital age. Today, every organization tries to explore the significant aspects of data and its applications.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Five benefits of a data catalog

IBM Journey to AI blog

An enterprise data catalog does all that a library inventory system does – namely streamlining data discovery and access across data sources – and a lot more. For example, data catalogs have evolved to deliver governance capabilities like managing data quality and data privacy and compliance.

Metadata 130
article thumbnail

Why data governance is essential for enterprise AI

IBM Journey to AI blog

If you add in IBM data governance solutions, the top left will look a bit more like this: The data governance solution powered by IBM Knowledge Catalog offers several capabilities to help facilitate advanced data discovery, automated data quality and data protection.

article thumbnail

AI that’s ready for business starts with data that’s ready for AI

IBM Journey to AI blog

Establishing a foundation of trust: Data quality and governance for enterprise AI As organizations increasingly rely on artificial intelligence (AI) to drive critical decision-making, the importance of data quality and governance cannot be overstated.

Metadata 113
article thumbnail

Build trust in banking with data lineage

IBM Journey to AI blog

This trust depends on an understanding of the data that inform risk models: where does it come from, where is it being used, and what are the ripple effects of a change? Moreover, banks must stay in compliance with industry regulations like BCBS 239, which focus on improving banks’ risk data aggregation and risk reporting capabilities.

ETL 243
article thumbnail

What is Data Ingestion? Understanding the Basics

Pickl AI

Summary: Data ingestion is the process of collecting, importing, and processing data from diverse sources into a centralised system for analysis. This crucial step enhances data quality, enables real-time insights, and supports informed decision-making. What are the Common Challenges in Data Ingestion?