Remove Data Discovery Remove Data Integration Remove Information
article thumbnail

Re-evaluating data management in the generative AI age

IBM Journey to AI blog

This requires traditional capabilities like encryption, anonymization and tokenization, but also creating capabilities to automatically classify data (sensitivity, taxonomy alignment) by using machine learning. Mitigating risk: Reducing risk associated with data used in gen AI solutions.

article thumbnail

Why data governance is essential for enterprise AI

IBM Journey to AI blog

So, if we are training a LLM on proprietary data about an enterprise’s customers, we can run into situations where the consumption of that model could be used to leak sensitive information. In-model learning data Many simple AI models have a training phase and then a deployment phase during which training is paused.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Five benefits of a data catalog

IBM Journey to AI blog

So, instead of wandering the aisles in hopes you’ll stumble across the book, you can walk straight to it and get the information you want much faster. An enterprise data catalog does all that a library inventory system does – namely streamlining data discovery and access across data sources – and a lot more.

Metadata 130
article thumbnail

Amazon AI Introduces DataLore: A Machine Learning Framework that Explains Data Changes between an Initial Dataset and Its Augmented Version to Improve Traceability

Marktechpost

Data scientists and engineers frequently collaborate on machine learning ML tasks, making incremental improvements, iteratively refining ML pipelines, and checking the model’s generalizability and robustness. To build a well-documented ML pipeline, data traceability is crucial. Examples of DATALORE utilization.

article thumbnail

What is Data Ingestion? Understanding the Basics

Pickl AI

Summary: Data ingestion is the process of collecting, importing, and processing data from diverse sources into a centralised system for analysis. This crucial step enhances data quality, enables real-time insights, and supports informed decision-making. It provides a user-friendly interface for designing data flows.

article thumbnail

What is ETL? Top ETL Tools

Marktechpost

ETL solutions employ several data management strategies to automate the extraction, transformation, and loading (ETL) process, reducing errors and speeding up data integration. Skyvia Skyvia is a cloud data platform created by Devart that enables no-coding data integration, backup, management, and access.

ETL 52
article thumbnail

3 Takeaways from Gartner’s 2018 Data and Analytics Summit

DataRobot Blog

In Rita Sallam’s July 27 research, Augmented Analytics , she writes that “the rise of self-service visual-bases data discovery stimulated the first wave of transition from centrally provisioned traditional BI to decentralized data discovery.” We agree with that.