article thumbnail

NLEPs: Bridging the gap between LLMs and symbolic reasoning

AI News

Researchers have introduced a novel approach called natural language embedded programs (NLEPs) to improve the numerical and symbolic reasoning capabilities of large language models (LLMs).

article thumbnail

Seeking Faster, More Efficient AI? Meet FP6-LLM: the Breakthrough in GPU-Based Quantization for Large Language Models

Marktechpost

In computational linguistics and artificial intelligence, researchers continually strive to optimize the performance of large language models (LLMs). These models, renowned for their capacity to process a vast array of language-related tasks, face significant challenges due to their expansive size.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

QoQ and QServe: A New Frontier in Model Quantization Transforming Large Language Model Deployment

Marktechpost

Quantization, a method integral to computational linguistics, is essential for managing the vast computational demands of deploying large language models (LLMs). It simplifies data, thereby facilitating quicker computations and more efficient model performance. Check out the Paper.

article thumbnail

Best Large Language Models & Frameworks of 2023

AssemblyAI

However, among all the modern-day AI innovations, one breakthrough has the potential to make the most impact: large language models (LLMs). These feats of computational linguistics have redefined our understanding of machine-human interactions and paved the way for brand-new digital solutions and communications.

article thumbnail

Leveraging Linguistic Expertise in NLP: A Deep Dive into RELIES and Its Impact on Large Language Models

Marktechpost

With the significant advancement in the fields of Artificial Intelligence (AI) and Natural Language Processing (NLP), Large Language Models (LLMs) like GPT have gained attention for producing fluent text without explicitly built grammar or semantic modules. If you like our work, you will love our newsletter.

article thumbnail

Do Large Language Models Really Need All Those Layers? This AI Research Unmasks Model Efficiency: The Quest for Essential Components in Large Language Models

Marktechpost

The advent of large language models (LLMs) has sparked significant interest among the public, particularly with the emergence of ChatGPT. These models, which are trained on extensive amounts of data, can learn in context, even with minimal examples.

article thumbnail

This AI Paper from Apple Unveils AlignInstruct: Pioneering Solutions for Unseen Languages and Low-Resource Challenges in Machine Translation

Marktechpost

One persistent challenge is the translation of low-resource languages, which often need more substantial data for training robust models. Traditional translation models, primarily based on large language models (LLMs), perform well with languages abundant in data but need help with underrepresented languages.