This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
This involves a series of semi-automated or automated operations implemented through data engineering pipeline frameworks. ELT Pipelines: Typically used for big data, these pipelines extract data, load it into data warehouses or lakes, and then transform it.
In this post, we demonstrate how data aggregated within the AWS CCI Post Call Analytics solution allowed Principal to gain visibility into their contact center interactions, better understand the customer journey, and improve the overall experience between contact channels while also maintaining dataintegrity and security.
It provides insights into considerations for choosing the right tool, ensuring businesses can optimize their dataintegration processes for better analytics and decision-making. Introduction In todays data-driven world, organizations are overwhelmed with vast amounts of information. What is ETL?
A typical data pipeline involves the following steps or processes through which the data passes before being consumed by a downstream process, such as an ML model training process. DataIngestion : Involves raw data collection from origin and storage using architectures such as batch, streaming or event-driven.
Introduction Data transformation plays a crucial role in data processing by ensuring that raw data is properly structured and optimised for analysis. Data transformation tools simplify this process by automating data manipulation, making it more efficient and reducing errors. calculating averages).
We organize all of the trending information in your field so you don't have to. Join 15,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content