Remove Blog Remove Metadata Remove ML Engineer
article thumbnail

Data4ML Preparation Guidelines (Beyond The Basics)

Towards AI

Data preparation isn’t just a part of the ML engineering process — it’s the heart of it. Data is a key differentiator in ML projects (more on this in my blog post below). This step, often done with data engineers, ensures a reproducible data snapshot from sources like production databases or APIs.

article thumbnail

Build a robust text-to-SQL solution generating complex queries, self-correcting, and querying diverse data sources

AWS Machine Learning Blog

Structured Query Language (SQL) is a complex language that requires an understanding of databases and metadata. Third, despite the larger adoption of centralized analytics solutions like data lakes and warehouses, complexity rises with different table names and other metadata that is required to create the SQL for the desired sources.

Metadata 141
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Deploy Amazon SageMaker pipelines using AWS Controllers for Kubernetes

AWS Machine Learning Blog

In this post, we introduce an example to help DevOps engineers manage the entire ML lifecycle—including training and inference—using the same toolkit. Solution overview We consider a use case in which an ML engineer configures a SageMaker model building pipeline using a Jupyter notebook.

DevOps 107
article thumbnail

Improve governance of models with Amazon SageMaker unified Model Cards and Model Registry

AWS Machine Learning Blog

You can now register machine learning (ML) models in Amazon SageMaker Model Registry with Amazon SageMaker Model Cards , making it straightforward to manage governance information for specific model versions directly in SageMaker Model Registry in just a few clicks.

Metadata 112
article thumbnail

Fine tune a generative AI application for Amazon Bedrock using Amazon SageMaker Pipeline decorators

AWS Machine Learning Blog

It automatically keeps track of model artifacts, hyperparameters, and metadata, helping you to reproduce and audit model versions. The SageMaker Pipelines decorator feature helps convert local ML code written as a Python program into one or more pipeline steps. SageMaker Pipelines can handle model versioning and lineage tracking.

article thumbnail

Driving advanced analytics outcomes at scale using Amazon SageMaker powered PwC’s Machine Learning Ops Accelerator

AWS Machine Learning Blog

Artificial intelligence (AI) and machine learning (ML) are becoming an integral part of systems and processes, enabling decisions in real time, thereby driving top and bottom-line improvements across organizations. However, putting an ML model into production at scale is challenging and requires a set of best practices.

article thumbnail

Learn how Amazon Ads created a generative AI-powered image generation capability using Amazon SageMaker

AWS Machine Learning Blog

This blog post shares more about how generative AI solutions from Amazon Ads help brands create more visually rich consumer experiences. In this blog post, we describe the architectural and operational details of how Amazon Ads implemented its generative AI-powered image creation solution on AWS.