Remove Blog Remove Business Intelligence Remove Metadata
article thumbnail

AI and the future of unstructured data

IBM Journey to AI blog

“ Gen AI has elevated the importance of unstructured data, namely documents, for RAG as well as LLM fine-tuning and traditional analytics for machine learning, business intelligence and data engineering,” says Edward Calvesbert, Vice President of Product Management at IBM watsonx and one of IBM’s resident data experts.

article thumbnail

AI that’s ready for business starts with data that’s ready for AI

IBM Journey to AI blog

Open is creating a foundation for storing, managing, integrating and accessing data built on open and interoperable capabilities that span hybrid cloud deployments, data storage, data formats, query engines, governance and metadata. A shared metadata layer, governance to catalog your data and data lineage enable trusted AI outputs.

Metadata 113
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

9 data governance strategies that will unlock the potential of your business data

IBM Journey to AI blog

Choose the right technology and tools Select tools that support data cataloging, lineage tracking, metadata management and data quality monitoring, helping to ensure integration with the organization’s existing data management infrastructure for a seamless transition.

Metadata 189
article thumbnail

How to use foundation models and trusted governance to manage AI workflow risk

IBM Journey to AI blog

It includes processes that trace and document the origin of data, models and associated metadata and pipelines for audits. A data store lets a business connect existing data with new data and discover new insights with real-time analytics and business intelligence. Track models and drive transparent processes.

Metadata 244
article thumbnail

How the right data and AI foundation can empower a successful ESG strategy

IBM Journey to AI blog

A well-designed data architecture should support business intelligence and analysis, automation, and AI—all of which can help organizations to quickly seize market opportunities, build customer value, drive major efficiencies, and respond to risks such as supply chain disruptions.

ESG 264
article thumbnail

Five benefits of a data catalog

IBM Journey to AI blog

It uses metadata and data management tools to organize all data assets within your organization. It synthesizes the information across your data ecosystem—from data lakes, data warehouses, and other data repositories—to empower authorized users to search for and access business-ready data for their projects and initiatives.

Metadata 130
article thumbnail

How data stores and governance impact your AI initiatives

IBM Journey to AI blog

Among the tasks necessary for internal and external compliance is the ability to report on the metadata of an AI model. Metadata includes details specific to an AI model such as: The AI model’s creation (when it was created, who created it, etc.)