This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
The operationalisation of data projects has been a key factor in helping organisations turn a data deluge into a workable digital transformation strategy, and DataOps carries on from where DevOps started. Photo by Larisa Birta on Unsplash Want to learn more about AI and bigdata from industry leaders?
The embeddings are captured in Amazon Simple Storage Service (Amazon S3) via Amazon Kinesis Data Firehose , and we run a combination of AWS Glue extract, transform, and load (ETL) jobs and Jupyter notebooks to perform the embedding analysis. Set the parameters for the ETL job as follows and run the job: Set --job_type to BASELINE.
About the authors Samantha Stuart is a Data Scientist with AWS Professional Services, and has delivered for customers across generative AI, MLOps, and ETL engagements. He has touched on most aspects of these projects, from infrastructure and DevOps to software development and AI/ML.
AI for DevOps and CI/CD: Streamlining the Pipeline Continuous Integration and Continuous Delivery (CI/CD) are essential components of modern software development, and AI is now helping to optimize this process. In the world of DevOps, AI can help monitor infrastructure, analyze logs, and detect performance bottlenecks in real-time.
It can also eliminate data silos by providing a single location for structured, semi-structured, and unstructured data. DataRobot All users, including data science and analytics professionals, IT and DevOps teams, executives, and information workers, can collaborate using DataRobot’s AI Cloud Platform.
We organize all of the trending information in your field so you don't have to. Join 15,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content