Remove Automation Remove Metadata Remove Responsible AI
article thumbnail

How DPG Media uses Amazon Bedrock and Amazon Transcribe to enhance video metadata with AI-powered pipelines

AWS Machine Learning Blog

With a growing library of long-form video content, DPG Media recognizes the importance of efficiently managing and enhancing video metadata such as actor information, genre, summary of episodes, the mood of the video, and more. Video data analysis with AI wasn’t required for generating detailed, accurate, and high-quality metadata.

Metadata 119
article thumbnail

Advancing AI trust with new responsible AI tools, capabilities, and resources

AWS Machine Learning Blog

As generative AI continues to drive innovation across industries and our daily lives, the need for responsible AI has become increasingly important. At AWS, we believe the long-term success of AI depends on the ability to inspire trust among users, customers, and society.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Automate Amazon Bedrock batch inference: Building a scalable and efficient pipeline

AWS Machine Learning Blog

It stores information such as job ID, status, creation time, and other metadata. The following is a screenshot of the DynamoDB table where you can track the job status and other types of metadata related to the job. The DynamoDB table is crucial for tracking and managing the batch inference jobs throughout their lifecycle.

article thumbnail

Automate invoice processing with Streamlit and Amazon Bedrock

AWS Machine Learning Blog

You can trigger the processing of these invoices using the AWS CLI or automate the process with an Amazon EventBridge rule or AWS Lambda trigger. structured: | Process the pdf invoice and list all metadata and values in json format for the variables with descriptions in tags. The result should be returned as JSON as given in the tags.

article thumbnail

3 key reasons why your organization needs Responsible AI

IBM Journey to AI blog

Gartner predicts that the market for artificial intelligence (AI) software will reach almost $134.8 Achieving Responsible AI As building and scaling AI models for your organization becomes more business critical, achieving Responsible AI (RAI) should be considered a highly relevant topic. billion by 2025.

article thumbnail

Bring light to the black box

IBM Journey to AI blog

A lack of confidence to operationalize AI Many organizations struggle when adopting AI. According to Gartner , 54% of models are stuck in pre-production because there is not an automated process to manage these pipelines and there is a need to ensure the AI models can be trusted.

Metadata 227
article thumbnail

How data stores and governance impact your AI initiatives

IBM Journey to AI blog

But the implementation of AI is only one piece of the puzzle. The tasks behind efficient, responsible AI lifecycle management The continuous application of AI and the ability to benefit from its ongoing use require the persistent management of a dynamic and intricate AI lifecycle—and doing so efficiently and responsibly.