Remove Automation Remove DevOps Remove ML Engineer
article thumbnail

AIOps vs. MLOps: Harnessing big data for “smarter” ITOPs

IBM Journey to AI blog

AIOPs refers to the application of artificial intelligence (AI) and machine learning (ML) techniques to enhance and automate various aspects of IT operations (ITOps). Scope and focus AIOps methodologies are fundamentally geared toward enhancing and automating IT operations. AIOps and MLOps: What’s the difference?

Big Data 278
article thumbnail

MLOps and DevOps: Why Data Makes It Different

O'Reilly Media

While there isn’t an authoritative definition for the term, it shares its ethos with its predecessor, the DevOps movement in software engineering: by adopting well-defined processes, modern tooling, and automated workflows, we can streamline the process of moving from development to robust production deployments.

DevOps 140
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Deploy Amazon SageMaker pipelines using AWS Controllers for Kubernetes

AWS Machine Learning Blog

Its scalability and load-balancing capabilities make it ideal for handling the variable workloads typical of machine learning (ML) applications. In this post, we introduce an example to help DevOps engineers manage the entire ML lifecycle—including training and inference—using the same toolkit.

DevOps 104
article thumbnail

MLOps Is an Extension of DevOps. Not a Fork — My Thoughts on THE MLOPS Paper as an MLOps Startup CEO

The MLOps Blog

Lived through the DevOps revolution. Came to ML from software. Founded neptune.ai , a modular MLOps component for ML metadata store , aka “experiment tracker + model registry”. If you’d like a TLDR, here it is: MLOps is an extension of DevOps. I don’t see what special role ML and MLOps engineers would play here. –

DevOps 59
article thumbnail

MLOps and the evolution of data science

IBM Journey to AI blog

It advances the scalability of ML in real-world applications by using algorithms to improve model performance and reproducibility. The paper suggested creating a systematic “MLOps” process that incorporated CI/CD methodology commonly used in DevOps to essentially create an assembly line for each step. What is MLOps?

article thumbnail

Mastering MLOps : The Ultimate Guide to Become a MLOps Engineer in 2024

Unite.AI

Understanding MLOps Before delving into the intricacies of becoming an MLOps Engineer, it's crucial to understand the concept of MLOps itself. Operations ML Model Deployment : Implementing and deploying ML models into production environments. ML Operations : Deploy and maintain ML models using established DevOps practices.

article thumbnail

Automate fine-tuning of Llama 3.x models with the new visual designer for Amazon SageMaker Pipelines

AWS Machine Learning Blog

It accelerates your generative AI journey from prototype to production because you don’t need to learn about specialized workflow frameworks to automate model development or notebook execution at scale. About the Authors Lauren Mullennex is a Senior AI/ML Specialist Solutions Architect at AWS.