Remove Automation Remove Business Intelligence Remove Data Ingestion
article thumbnail

Celebrating 40 years of Db2: Running the world’s mission critical workloads

IBM Journey to AI blog

Don Haderle, a retired IBM Fellow and considered to be the “father of Db2,” viewed 1988 as a seminal point in its development as D B2 version 2 proved it was viable for online transactional processing (OLTP)—the lifeblood of business computing at the time. Db2 (LUW) was born in 1993, and 2023 marks its 30th anniversary.

article thumbnail

Data architecture strategy for data quality

IBM Journey to AI blog

The right data architecture can help your organization improve data quality because it provides the framework that determines how data is collected, transported, stored, secured, used and shared for business intelligence and data science use cases.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Achieve operational excellence with well-architected generative AI solutions using Amazon Bedrock

AWS Machine Learning Blog

This allows you to create rules that invoke specific actions when certain events occur, enhancing the automation and responsiveness of your observability setup (for more details, see Monitor Amazon Bedrock ). The job could be automated based on a ground truth, or you could use humans to bring in expertise on the matter.

article thumbnail

Principal Financial Group uses AWS Post Call Analytics solution to extract omnichannel customer insights

AWS Machine Learning Blog

In order analyze the calls properly, Principal had a few requirements: Contact details: Understanding the customer journey requires understanding whether a speaker is an automated interactive voice response (IVR) system or a human agent and when a call transfer occurs between the two.

article thumbnail

Popular Data Transformation Tools: Importance and Best Practices

Pickl AI

Summary: Data transformation tools streamline data processing by automating the conversion of raw data into usable formats. These tools enhance efficiency, improve data quality, and support Advanced Analytics like Machine Learning. These tools automate the process, making it faster and more accurate.

ETL 52
article thumbnail

Discover the Snowflake Architecture With All its Pros and Cons- NIX United

Mlearning.ai

Today, companies are facing a continual need to store tremendous volumes of data. The demand for information repositories enabling business intelligence and analytics is growing exponentially, giving birth to cloud solutions. Bulk Data Load Data migration to Snowflake can be a challenge.

article thumbnail

Differentiation: Microsoft Fabric vs Power BI

Pickl AI

Data Factory : Simplifies the creation of ETL pipelines to integrate data from diverse sources. Data Activator : Automates workflows, making data-triggered actions possible. These components work together to ensure businesses can manage their data efficiently in one place. What is Power BI?

ETL 52