Remove Auto-complete Remove Metadata Remove Software Engineer
article thumbnail

From Solo Notebooks to Collaborative Powerhouse: VS Code Extensions for Data Science and ML Teams

Towards AI

We are data wranglers at heart, not necessarily software engineers by training, and best practices for reproducibility can sometimes get pushed aside in the heat of exploration. As a result, I turned to VS Code, which offers a more robust environment for teamwork and adherence to software engineering principles.

article thumbnail

Streamline diarization using AI as an assistive technology: ZOO Digital’s story

AWS Machine Learning Blog

This time-consuming process must be completed before content can be dubbed into another language. SageMaker asynchronous endpoints support upload sizes up to 1 GB and incorporate auto scaling features that efficiently mitigate traffic spikes and save costs during off-peak times. in a code subdirectory. in a code subdirectory.

Metadata 121
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

MLOps Is an Extension of DevOps. Not a Fork — My Thoughts on THE MLOPS Paper as an MLOps Startup CEO

The MLOps Blog

Just so you know where I am coming from: I have a heavy software development background (15+ years in software). Came to ML from software. Founded two successful software services companies. Founded neptune.ai , a modular MLOps component for ML metadata store , aka “experiment tracker + model registry”.

DevOps 59
article thumbnail

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

AWS Machine Learning Blog

However, model governance functions in an organization are centralized and to perform those functions, teams need access to metadata about model lifecycle activities across those accounts for validation, approval, auditing, and monitoring to manage risk and compliance. It can take up to 20 minutes for the setup to complete.

ML 95
article thumbnail

MLOps Landscape in 2023: Top Tools and Platforms

The MLOps Blog

When thinking about a tool for metadata storage and management, you should consider: General business-related items : Pricing model, security, and support. Flexibility, speed, and accessibility : can you customize the metadata structure? Can you see the complete model lineage with data/models/experiments used downstream?

article thumbnail

Get started quickly with AWS Trainium and AWS Inferentia using AWS Neuron DLAMI and AWS Neuron DLC

AWS Machine Learning Blog

Launch the instance using Neuron DLAMI Complete the following steps: On the Amazon EC2 console, choose your desired AWS Region and choose Launch Instance. You can update your Auto Scaling groups to use new AMI IDs without needing to create new launch templates or new versions of launch templates each time an AMI ID changes.

article thumbnail

Host ML models on Amazon SageMaker using Triton: CV model with PyTorch backend

AWS Machine Learning Blog

Each model deployed with Triton requires a configuration file ( config.pbtxt ) that specifies model metadata, such as input and output tensors, model name, and platform. Set up your environment To set up your environment, complete the following steps: Launch a SageMaker notebook instance with a g5.xlarge xlarge instance.

ML 109