Remove Auto-complete Remove Metadata Remove Prompt Engineering
article thumbnail

Use custom metadata created by Amazon Comprehend to intelligently process insurance claims using Amazon Kendra

AWS Machine Learning Blog

Enterprises may want to add custom metadata like document types (W-2 forms or paystubs), various entity types such as names, organization, and address, in addition to the standard metadata like file type, date created, or size to extend the intelligent search while ingesting the documents.

Metadata 121
article thumbnail

Evaluate large language models for your machine translation tasks on AWS

AWS Machine Learning Blog

The solution proposed in this post relies on LLMs context learning capabilities and prompt engineering. When using the FAISS adapter, translation units are stored into a local FAISS index along with the metadata. The request is sent to the prompt generator.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Evolving Trends in Prompt Engineering for Large Language Models (LLMs) with Built-in Responsible AI…

ODSC - Open Data Science

Evolving Trends in Prompt Engineering for Large Language Models (LLMs) with Built-in Responsible AI Practices Editor’s note: Jayachandran Ramachandran and Rohit Sroch are speakers for ODSC APAC this August 22–23. Various prompting techniques, such as Zero/Few Shot, Chain-of-Thought (CoT)/Self-Consistency, ReAct, etc.

article thumbnail

Accelerate video Q&A workflows using Amazon Bedrock Knowledge Bases, Amazon Transcribe, and thoughtful UX design

AWS Machine Learning Blog

By using a combination of transcript preprocessing, prompt engineering, and structured LLM output, we enable the user experience shown in the following screenshot, which demonstrates the conversion of LLM-generated timestamp citations into clickable buttons (shown underlined in red) that navigate to the correct portion of the source video.

UX Design 109
article thumbnail

MLOps Landscape in 2023: Top Tools and Platforms

The MLOps Blog

The platform also offers features for hyperparameter optimization, automating model training workflows, model management, prompt engineering, and no-code ML app development. When thinking about a tool for metadata storage and management, you should consider: General business-related items : Pricing model, security, and support.

article thumbnail

Build a serverless meeting summarization backend with large language models on Amazon SageMaker JumpStart

AWS Machine Learning Blog

You can use large language models (LLMs), more specifically, for tasks including summarization, metadata extraction, and question answering. SageMaker endpoints are fully managed and support multiple hosting options and auto scaling. Complete the following steps: On the Amazon S3 console, choose Buckets in the navigation pane.

article thumbnail

Evaluate the reliability of Retrieval Augmented Generation applications using Amazon Bedrock

AWS Machine Learning Blog

Additionally, evaluation can identify potential biases, hallucinations, inconsistencies, or factual errors that may arise from the integration of external sources or from sub-optimal prompt engineering. In this case, the model choice needs to be revisited or further prompt engineering needs to be done.