Remove AI Remove ML Remove Neural Network
article thumbnail

AI vs. Machine Learning vs. Deep Learning vs. Neural Networks: What’s the difference?

IBM Journey to AI blog

While artificial intelligence (AI), machine learning (ML), deep learning and neural networks are related technologies, the terms are often used interchangeably, which frequently leads to confusion about their differences. Machine learning is a subset of AI. What is artificial intelligence (AI)?

article thumbnail

Supercharging Graph Neural Networks with Large Language Models: The Ultimate Guide

Unite.AI

The ability to effectively represent and reason about these intricate relational structures is crucial for enabling advancements in fields like network science, cheminformatics, and recommender systems. Graph Neural Networks (GNNs) have emerged as a powerful deep learning framework for graph machine learning tasks.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Inductive biases of neural network modularity in spatial navigation

ML @ CMU

Motivation Despite the tremendous success of AI in recent years, it remains true that even when trained on the same data, the brain outperforms AI in many tasks, particularly in terms of fast in-distribution learning and zero-shot generalization to unseen data. In the emerging field of neuroAI ( Zador et al.,

article thumbnail

A New AI Approach for Estimating Causal Effects Using Neural Networks

Marktechpost

More sophisticated methods like TARNet, Dragonnet, and BCAUSS have emerged, leveraging the concept of representation learning with neural networks. In some cases, the neural network might detect and rely on interactions between variables that don’t actually have a causal relationship.

article thumbnail

Unifying Neural Network Design with Category Theory: A Comprehensive Framework for Deep Learning Architecture

Marktechpost

In deep learning, a unifying framework to design neural network architectures has been a challenge and a focal point of recent research. The researchers tackle the core issue of the absence of a general-purpose framework capable of addressing both the specification of constraints and their implementations within neural network models.

article thumbnail

Rethinking Neural Network Efficiency: Beyond Parameter Counting to Practical Data Fitting

Marktechpost

Neural networks, despite their theoretical capability to fit training sets with as many samples as they have parameters, often fall short in practice due to limitations in training procedures. Key technical aspects include the use of various neural network architectures (MLPs, CNNs, ViTs) and optimizers (SGD, Adam, AdamW, Shampoo).

article thumbnail

MIT Researchers Developed a New Method that Uses Artificial Intelligence to Automate the Explanation of Complex Neural Networks

Marktechpost

The challenge of interpreting the workings of complex neural networks, particularly as they grow in size and sophistication, has been a persistent hurdle in artificial intelligence. The traditional methods of explaining neural networks often involve extensive human oversight, limiting scalability.