This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
The rapid advancements in artificial intelligence and machine learning (AI/ML) have made these technologies a transformative force across industries. According to a McKinsey study , across the financial services industry (FSI), generative AI is projected to deliver over $400 billion (5%) of industry revenue in productivity benefits.
Data exploration and model development were conducted using well-known machine learning (ML) tools such as Jupyter or Apache Zeppelin notebooks. To address the legacy data science environment challenges, Rocket decided to migrate its ML workloads to the Amazon SageMaker AI suite.
SageMaker Studio is a comprehensive IDE that offers a unified, web-based interface for performing all aspects of the machine learning (ML) development lifecycle. This approach allows for greater flexibility and integration with existing AI/ML workflows and pipelines. Deploy Meta SAM 2.1 Choose Delete again to confirm.
In this post, we share how Axfood, a large Swedish food retailer, improved operations and scalability of their existing artificial intelligence (AI) and machine learning (ML) operations by prototyping in close collaboration with AWS experts and using Amazon SageMaker. This is a guest post written by Axfood AB.
We organize all of the trending information in your field so you don't have to. Join 15,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content