This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Several times black-boxAImodels have produced unintended consequences, including biased decisions and lack of interpretability. Composite AI is a cutting-edge approach to holistically tackling complex business problems. It achieves this by integrating multiple analytical techniques into a single solution.
Source: interpretable-ml-book The field of deep learning has grown exponentially and the recent craze about ChatGPT is proof of the same. The models are becoming more and more complex with deeper layers leading to greater accuracy. One issue with this current trend is the focus on interpretability is lost at times.
The new field of MLOps offers a much stronger framework for model validation, documentation, and oversight than traditional manual efforts, while more closely aligning to the ever increasing regulatory requirements and vastly reducing “model risk.”. The Framework for ML Governance. appeared first on DataRobot AI Cloud.
What is contained in the model is an enormous set of parameters based on all the content that has been ingested during training, that represents the probability that one word is likely to follow another. The ability to emit a sonnet that Shakespeare never wrote: that’s transformative, even if the new sonnet isn’t very good.
Principles of Explainable AI( Source ) Imagine a world where artificial intelligence (AI) not only makes decisions but also explains them as clearly as a human expert. This isn’t a scene from a sci-fi movie; it’s the emerging reality of Explainable AI (XAI). What is Explainable AI?
We organize all of the trending information in your field so you don't have to. Join 15,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content