This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
This post is co-written with Travis Bronson, and Brian L Wilkerson from Duke Energy Machinelearning (ML) is transforming every industry, process, and business, but the path to success is not always straightforward. Finally, there is no labeled data available for training a supervised machinelearning model.
We used statistical machinelearning (EchoMap) and zero-shot inference using GPT. We show that statistical machinelearning can map text to structured ontology and may be especially useful for small, specialized text datasets.
In recent years, knowledge graphs have become an important tool for organizing and accessing large volumes of enterprise data in diverse industries — from healthcare to industrial, to banking and insurance, to retail and more. A knowledge graph is a graph-based database that represents knowledge in …
From the very early days of the World Wide Web, researchers identified a need to be able to understand the semantics of the information on the Web in …
We organize all of the trending information in your field so you don't have to. Join 15,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content