This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
While Apple, Samsung, and Qualcomm are demonstrating the power of hybridAI through their ecosystem features, these remain walled gardens. But AI shouldn't be limited by which end-user device someone happens to use. NeuroSplit is fundamentally device-agnostic, cloud-agnostic, and neuralnetwork-agnostic.
Largelanguagemodels (LLMs) have exploded in popularity over the last few years, revolutionizing natural language processing and AI. What are LargeLanguageModels and Why are They Important? Techniques like Word2Vec and BERT create embedding models which can be reused.
One popular term encountered in generative AI practice is retrieval-augmented generation (RAG). Reasons for using RAG are clear: largelanguagemodels (LLMs), which are effectively syntax engines, tend to “hallucinate” by inventing answers from pieces of their training data. Do LLMs Really Adapt to Domains?
Scientific AI requires handling specific scientific data characteristics, including incorporating known domain knowledge such as partial differential equations (PDEs). Scaling AI systems involves both model-based and data-based parallelism.
We organize all of the trending information in your field so you don't have to. Join 15,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content