Remove Explainability Remove LLM Remove Responsible AI
article thumbnail

Advancing AI trust with new responsible AI tools, capabilities, and resources

AWS Machine Learning Blog

As generative AI continues to drive innovation across industries and our daily lives, the need for responsible AI has become increasingly important. At AWS, we believe the long-term success of AI depends on the ability to inspire trust among users, customers, and society.

article thumbnail

Considerations for addressing the core dimensions of responsible AI for Amazon Bedrock applications

AWS Machine Learning Blog

The rapid advancement of generative AI promises transformative innovation, yet it also presents significant challenges. Concerns about legal implications, accuracy of AI-generated outputs, data privacy, and broader societal impacts have underscored the importance of responsible AI development.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

With Generative AI Advances, The Time to Tackle Responsible AI Is Now

Unite.AI

Today, seven in 10 companies are experimenting with generative AI, meaning that the number of AI models in production will skyrocket over the coming years. As a result, industry discussions around responsible AI have taken on greater urgency.

article thumbnail

Design Patterns in Python for AI and LLM Engineers: A Practical Guide

Unite.AI

For AI and large language model (LLM) engineers , design patterns help build robust, scalable, and maintainable systems that handle complex workflows efficiently. This article dives into design patterns in Python, focusing on their relevance in AI and LLM -based systems. forms, REST API responses).

Python 147
article thumbnail

DeepSeek Distractions: Why AI-Native Infrastructure, Not Models, Will Define Enterprise Success

Unite.AI

Instead of solely focusing on whos building the most advanced models, businesses need to start investing in robust, flexible, and secure infrastructure that enables them to work effectively with any AI model, adapt to technological advancements, and safeguard their data. AI governance manages three things.

LLM 165
article thumbnail

The Black Box Problem in LLMs: Challenges and Emerging Solutions

Unite.AI

SHAP's strength lies in its consistency and ability to provide a global perspective – it not only explains individual predictions but also gives insights into the model as a whole. Interpretability Reducing the scale of LLMs could enhance interpretability but at the cost of their advanced capabilities.

LLM 264
article thumbnail

Read graphs, diagrams, tables, and scanned pages using multimodal prompts in Amazon Bedrock

AWS Machine Learning Blog

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon through a single API. The following screenshot shows the response. You can try out something harder as well.