This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Introduction AI is growing quickly, and multimodal AI is among its best achievements. Unlike traditional AI systems that can only process a single type of data at a time, e.g., text, images, or audio, multimodal AI can simultaneously process multiple input forms. This allows the AI system to understand the input data more comprehensively, leading […] The post What Future Awaits with Multimodal AI?
Elon Musk founded xAI last summer, and The Verge just reported that it’s already making waves by announcing a massive $6 billion funding round. According to the company, this money will help bring xAI’s first products to market, build advanced infrastructure, and accelerate research and development efforts into future technologies. Musk has some history in the AI space.
Introduction PaLiGemma is an open-source state-of-the-art model released alongside other products at Google I/O 2024 and combines two other models developed by Google. Based on open components like the SigLIP vision model and the Gemma language model, PaliGemma is a flexible and lightweight vision-language model (VLM) that draws inspiration from PaLI-3.
In an interview ahead of the Intelligent Automation Conference , Ben Ball, Senior Director of Product Marketing at IBM , shed light on the tech giant’s latest AI endeavours and its groundbreaking new Concert product. IBM’s current focal point in AI research and development lies in applying it to technology operations. As Ball explained, “As people try to build applications out in the world, it’s an increasingly complex situation.
AI is reshaping marketing and sales, empowering professionals to work smarter, faster, and more effectively. This webinar will provide a practical introduction to AI, focusing on its current applications, transformative potential, and strategies for successful implementation in your organization. Using real-world examples and actionable insights, we’ll examine how businesses are leveraging AI to increase efficiency, enhance personalization, and drive measurable results.
Introduction One of the most important tasks in natural language processing is text summarizing, which reduces long texts to brief summaries while maintaining important information. This subject has been transformed by Transformers, which are sophisticated deep learning models that provide unmatched performance in extractive and abstractive summarization techniques.
Recent advancements in hardware such as Nvidia H100 GPU, have significantly enhanced computational capabilities. With nine times the speed of the Nvidia A100, these GPUs excel in handling deep learning workloads. This advancement has spurred the commercial use of generative AI in natural language processing (NLP) and computer vision, enabling automated and intelligent data extraction.
Recent advancements in hardware such as Nvidia H100 GPU, have significantly enhanced computational capabilities. With nine times the speed of the Nvidia A100, these GPUs excel in handling deep learning workloads. This advancement has spurred the commercial use of generative AI in natural language processing (NLP) and computer vision, enabling automated and intelligent data extraction.
Introduction Neural networks are systems designed to mimic the human brain. They consist of interconnected neurons or nodes. These nodes work together to interpret data and find patterns. Many artificial intelligence applications rely on neural networks. It’s important to know about the different types of neural networks because each one has unique strengths and weaknesses. […] The post Difference Between ANN, CNN and RNN appeared first on Analytics Vidhya.
In the realm of software development, efficiency and innovation are of paramount importance. As businesses strive to deliver cutting-edge solutions at an unprecedented pace, generative AI is poised to transform every stage of the software development lifecycle (SDLC). A McKinsey study shows that software developers can complete coding tasks up to twice as fast with generative AI.
Automatically-generated transcripts from audio and video files are a lot more useful and readable when punctuation, casing, and formatting are added to the transcription result. Take this short segment for example. The text on top has no punctuation, casing, or formatting, and doesn't filter out disfluencies. Meanwhile, the text at the bottom does have punctuation, casing, formatting, and no disfluencies.
Imagine delving into the mysteries of ancient civilizations through their board games, such as Senet and Patolli. They offer a glimpse into the past, but their rules have been lost, leaving people wondering how they were played. Artificial intelligence shines in this scenario, and it's the key to unlocking these ancient secrets. AI revolutionizes how people understand these old games, using complex algorithms to hypothesize rules from fragments of historical texts and artifacts.
Speaker: Joe Stephens, J.D., Attorney and Law Professor
Ready to cut through the AI hype and learn exactly how to use these tools in your legal work? Join this webinar to get practical guidance from attorney and AI legal expert, Joe Stephens, who understands what really matters for legal professionals! What You'll Learn: Evaluate AI Tools Like a Pro 🔍 Learn which tools are worth your time and how to spot potential security risks before they become problems.
Large multimodal models (LMMs) integrate multiple data types into a single model. By combining text data with images and other modalities during training, multimodal models such as Claude3, GPT-4V, and Gemini Pro Vision gain more comprehensive understanding and improved ability to process diverse data types. The multimodal approach allows models to handle a wider range of real-world tasks that involve both text and non-text inputs.
Protein design is a rapidly advancing field leveraging computational models to create proteins with novel structures and functions. This technology has significant applications in therapeutics and industrial processes, revolutionizing how proteins are engineered for specific tasks. Researchers in this field aim to develop methods that accurately predict and generate protein structures that perform desired functions efficiently.
Multimodal Large Language Models (MLLMs) represent an advanced field in artificial intelligence where models integrate visual and textual information to understand and generate responses. These models have evolved from large language models (LLMs) that excelled in text comprehension and generation to now also processing and understanding visual data, enhancing their overall capabilities significantly.
Forget predictions, let’s focus on priorities for the year and explore how to supercharge your employee experience. Join Miriam Connaughton and Carolyn Clark as they discuss key HR trends for 2025—and how to turn them into actionable strategies for your organization. In this dynamic webinar, our esteemed speakers will share expert insights and practical tips to help your employee experience adapt and thrive.
Maintaining the accuracy of Large Language Models (LLMs), such as GPT, is crucial, particularly in cases requiring factual accuracy, like news reporting or educational content creation. Despite their impressive capabilities, LLMs are prone to generating plausible but nonfactual information, known as “hallucinations,” usually when faced with open-ended queries that require broad world knowledge.
Neural networks have been widely used to solve partial differential equations (PDEs) in different fields, such as biology, physics, and materials science. Although current research focuses on PDEs with a singular solution, nonlinear PDEs with multiple solutions create a major problem. Different neural network methods including PINN, the Deep Ritz method, and DeepONet, are developed to handle PDEs but they can learn only one solution for a learning process.
Speaker: Joe Stephens, J.D., Attorney and Law Professor
Get ready to uncover what attorneys really need from you when it comes to trial prep in this new webinar! Attorney and law professor, Joe Stephens, J.D., will share proven techniques for anticipating attorney needs, organizing critical documents, and transforming complex information into compelling case presentations. Key Learning Objectives: Organization That Makes Sense 🎯 Learn how to structure and organize case materials in ways that align with how attorneys actually work and think.
iManage and fast-expanding legal research company vLex, which merged with Fastcase last year, have formed a partnership to support a number of close integrations that.
With significant advancements through its Gemini, PaLM, and Bard models, Google has been at the forefront of AI development. Each model has distinct capabilities and applications, reflecting Google’s research in the LLM world to push the boundaries of AI technology. Gemini: Google’s Multimodal Marvel Gemini represents the pinnacle of Google’s AI research, developed by Google DeepMind.
Introduction The process of deploying machine learning models is an important part of deploying AI technologies and systems to the real world. Unfortunately, the road to model deployment can be a tough one. The process of deployment is often characterized by challenges associated with taking a trained model — the culmination of a lengthy data-preparation […] The post Tips for Deploying Machine Learning Models Efficiently appeared first on MachineLearningMastery.com.
What are AI Agents? Artificial intelligence (AI) agents are intelligent beings with the capacity to sense their surroundings, analyze information, and act independently to accomplish predetermined objectives. These agents use AI approaches to perform their functions and can be either software-based or physical beings. An AI agent is essentially a system that can interact with its environment, collect data, make judgments based on that data, and take action to change its environment or complete t
Transitioning to a usage-based business model offers powerful growth opportunities but comes with unique challenges. How do you validate strategies, reduce risks, and ensure alignment with customer value? Join us for a deep dive into designing effective pilots that test the waters and drive success in usage-based revenue. Discover how to develop a pilot that captures real customer feedback, aligns internal teams with usage metrics, and rethinks sales incentives to prioritize lasting customer eng
The Mistral AI Team has announced the release of its groundbreaking code generation model, Codestral-22B. This contributes toward a new direction and benchmark of AI for software development. Codestral empowers developers by enhancing their coding capabilities and streamlining the development process. Codestral is an open-weight generative AI model explicitly crafted for code generation tasks.
Wilson Sonsini, Latham & Watkins, Orrick, Gravity Stack, ClearyX, DWF, the Flatiron Law Group, Mayer Brown, and Gunderson Dettmer are just some of the pioneering.
The rapid advancements in sequencing technologies have unlocked unprecedented potential in genomic research and precision medicine. However, the challenge of accurately identifying genetic variants from billions of short, error-prone sequence reads remains significant. A promising solution to this challenge has emerged in DeepVariant, a deep CNN designed to call genetic variants by learning statistical relationships between images of read pileups and true genotype calls.
Many software teams have migrated their testing and production workloads to the cloud, yet development environments often remain tied to outdated local setups, limiting efficiency and growth. This is where Coder comes in. In our 101 Coder webinar, you’ll explore how cloud-based development environments can unlock new levels of productivity. Discover how to transition from local setups to a secure, cloud-powered ecosystem with ease.
By Ben Jennings, Global Director, Workflow Management at BigHand. Over the last four years, BigHand has carried out annual surveys to gain insights into trends.
Community Question Answering (CQA) platforms, exemplified by Quora, Yahoo! Answers, and StackOverflow, serve as interactive hubs for information exchange. Despite their popularity, the varying quality of responses poses a challenge for users who must navigate through numerous answers to find relevant information efficiently. Answer selection becomes pivotal, aiming to pinpoint the most pertinent responses from a pool of options.
We organize all of the trending information in your field so you don't have to. Join 15,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content