This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
In a significant advancement for document processing, Anthropic has unveiled new PDF support capabilities for its Claude 3.5 Sonnet model. This development marks a crucial step forward in bridging the gap between traditional document formats and AI analysis, enabling organizations to leverage advanced AI capabilities across their existing document infrastructure.
Last Updated on November 2, 2024 by Editorial Team Author(s): Get The Gist Originally published on Towards AI. Plus: Claude AI Gets Desktop App This member-only story is on us. Upgrade to access all of Medium. Welcome to Get The Gist, where every weekday we share an easy-to-read summary of the latest and greatest developments in AI — news, innovations, and trends — all delivered in under 5 minutes!
Tactile sensing plays a crucial role in robotics, helping machines understand and interact with their environment effectively. However, the current state of vision-based tactile sensors poses significant challenges. The diversity of sensors—ranging in shape, lighting, and surface markings—makes it difficult to build a universal solution. Traditional models are often developed and designed specifically for certain tasks or sensors, which makes scaling these solutions across different applications
Today’s buyers expect more than generic outreach–they want relevant, personalized interactions that address their specific needs. For sales teams managing hundreds or thousands of prospects, however, delivering this level of personalization without automation is nearly impossible. The key is integrating AI in a way that enhances customer engagement rather than making it feel robotic.
Author(s): Gennaro Daniele Acciaro Originally published on Towards AI. An image generated using Midjourney In the life of a Machine Learning Engineer, training a model is only half the battle. Indeed, after obtaining a neural network that accurately predicts all the test data, it remains useless unless it’s made accessible to the world. Model deployment is the process of making a model accessible and usable in production environments, where it can generate predictions and provide real-time insig
In recent times, large language models (LLMs) built on the Transformer architecture have shown remarkable abilities across a wide range of tasks. However, these impressive capabilities usually come with a significant increase in model size, resulting in substantial GPU memory costs during inference. The KV cache is a popular method used in LLM inference.
In recent times, large language models (LLMs) built on the Transformer architecture have shown remarkable abilities across a wide range of tasks. However, these impressive capabilities usually come with a significant increase in model size, resulting in substantial GPU memory costs during inference. The KV cache is a popular method used in LLM inference.
Jamba 1.5 is an instruction-tuned large language model that comes in two versions: Jamba 1.5 Large with 94 billion active parameters and Jamba 1.5 Mini with 12 billion active parameters. It combines the Mamba Structured State Space Model (SSM) with the traditional Transformer architecture. This model, developed by AI21 Labs, can process a 256K effective […] The post Jamba 1.5: Hybrid Mamba-Transformer Model for Advanced NLP appeared first on Analytics Vidhya.
Last Updated on November 3, 2024 by Editorial Team Author(s): Fernando Guzman Originally published on Towards AI. Support Vector Machines, or SVM, is a machine learning algorithm that, in its original form, is utilized for binary classification. The SVM model seeks to determine the optimal separation line between two classes, understood as the best margin between these classes, as demonstrated in the following example: SVM Example by OSCAR CONTRERAS CARRASCO As shown in the image, we have a sepa
In recent years, multimodal large language models (MLLMs) have revolutionized vision-language tasks, enhancing capabilities such as image captioning and object detection. However, when dealing with multiple text-rich images, even state-of-the-art models face significant challenges. The real-world need to understand and reason over text-rich images is crucial for applications like processing presentation slides, scanned documents, and webpage snapshots.
Speaker: Ben Epstein, Stealth Founder & CTO | Tony Karrer, Founder & CTO, Aggregage
When tasked with building a fundamentally new product line with deeper insights than previously achievable for a high-value client, Ben Epstein and his team faced a significant challenge: how to harness LLMs to produce consistent, high-accuracy outputs at scale. In this new session, Ben will share how he and his team engineered a system (based on proven software engineering approaches) that employs reproducible test variations (via temperature 0 and fixed seeds), and enables non-LLM evaluation m
Quantization is an essential technique in machine learning for compressing model data, which enables the efficient operation of large language models (LLMs). As the size and complexity of these models expand, they increasingly demand vast storage and memory resources, making their deployment a challenge on limited hardware. Quantization directly addresses these challenges by reducing the memory footprint of models, making them accessible for more diverse applications, from complex natural langua
Multimodal Retrieval Augmented Generation (RAG) technology has opened new possibilities for artificial intelligence (AI) applications in manufacturing, engineering, and maintenance industries. These fields rely heavily on documents that combine complex text and images, including manuals, technical diagrams, and schematics. AI systems capable of interpreting both text and visuals have the potential to support intricate, industry-specific tasks, but such tasks present unique challenges.
Promptfoo is a command-line interface (CLI) and library designed to enhance the evaluation and security of large language model (LLM) applications. It enables users to create robust prompts, model configurations, and retrieval-augmented generation (RAG) systems through use-case-specific benchmarks. This tool supports automated red teaming and penetration testing to ensure application security.
The ability to generate accurate conclusions based on data inputs is essential for strong reasoning and dependable performance in Artificial Intelligence (AI) systems. The softmax function is a crucial element that supports this functionality in modern AI models. A major component of differentiable query-key lookups is the softmax function, which enables the model to concentrate on pertinent portions of the input data in a way that can be improved or learned over time.
The DHS compliance audit clock is ticking on Zero Trust. Government agencies can no longer ignore or delay their Zero Trust initiatives. During this virtual panel discussion—featuring Kelly Fuller Gordon, Founder and CEO of RisX, Chris Wild, Zero Trust subject matter expert at Zermount, Inc., and Principal of Cybersecurity Practice at Eliassen Group, Trey Gannon—you’ll gain a detailed understanding of the Federal Zero Trust mandate, its requirements, milestones, and deadlines.
Large Language Models (LLMs) have emerged as powerful tools in natural language processing, yet understanding their internal representations remains a significant challenge. Recent breakthroughs using sparse autoencoders have revealed interpretable “features” or concepts within the models’ activation space. While these discovered feature point clouds are now publicly accessible, comprehending their complex structural organization across different scales presents a crucial resea
Escalation in AI implies an increased infrastructure expenditure. The massive and multidisciplinary research exerts economic pressure on institutions as high-performance computing (HPC) costs an arm and a leg. HPC is financially draining and critically impacts energy consumption and the environment. By 2030, AI is projected to account for 2% of global electricity consumption.
A key question about LLMs is whether they solve reasoning tasks by learning transferable algorithms or simply memorizing training data. This distinction matters: while memorization might handle familiar tasks, true algorithmic understanding allows for broader generalization. Arithmetic reasoning tasks could reveal if LLMs apply learned algorithms, like vertical addition in human learning, or if they rely on memorized patterns from training data.
The Evidence Lower Bound (ELBO) is a key objective for training generative models like Variational Autoencoders (VAEs). It parallels neuroscience, aligning with the Free Energy Principle (FEP) for brain function. This shared objective hints at a potential unified machine learning and neuroscience theory. However, both ELBO and FEP lack prescriptive specificity, partly due to limitations in standard Gaussian assumptions in models, which don’t align with neural circuit behaviors.
Speaker: Alexa Acosta, Director of Growth Marketing & B2B Marketing Leader
Marketing is evolving at breakneck speed—new tools, AI-driven automation, and changing buyer behaviors are rewriting the playbook. With so many trends competing for attention, how do you cut through the noise and focus on what truly moves the needle? In this webinar, industry expert Alexa Acosta will break down the most impactful marketing trends shaping the industry today and how to turn them into real, revenue-generating strategies.
We organize all of the trending information in your field so you don't have to. Join 15,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content