Remove DevOps Remove Metadata Remove ML Engineer
article thumbnail

Deploy Amazon SageMaker pipelines using AWS Controllers for Kubernetes

AWS Machine Learning Blog

Its scalability and load-balancing capabilities make it ideal for handling the variable workloads typical of machine learning (ML) applications. In this post, we introduce an example to help DevOps engineers manage the entire ML lifecycle—including training and inference—using the same toolkit.

DevOps 114
article thumbnail

MLOps Is an Extension of DevOps. Not a Fork — My Thoughts on THE MLOPS Paper as an MLOps Startup CEO

The MLOps Blog

Lived through the DevOps revolution. Came to ML from software. Founded neptune.ai , a modular MLOps component for ML metadata store , aka “experiment tracker + model registry”. Most of our customers are doing ML/MLOps at a reasonable scale, NOT at the hyperscale of big-tech FAANG companies. Not a fork.

DevOps 59
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Driving advanced analytics outcomes at scale using Amazon SageMaker powered PwC’s Machine Learning Ops Accelerator

AWS Machine Learning Blog

Many businesses already have data scientists and ML engineers who can build state-of-the-art models, but taking models to production and maintaining the models at scale remains a challenge. Machine learning operations (MLOps) applies DevOps principles to ML systems.

article thumbnail

Fine tune a generative AI application for Amazon Bedrock using Amazon SageMaker Pipeline decorators

AWS Machine Learning Blog

It automatically keeps track of model artifacts, hyperparameters, and metadata, helping you to reproduce and audit model versions. The SageMaker Pipelines decorator feature helps convert local ML code written as a Python program into one or more pipeline steps. SageMaker Pipelines can handle model versioning and lineage tracking.

article thumbnail

How Earth.com and Provectus implemented their MLOps Infrastructure with Amazon SageMaker

AWS Machine Learning Blog

They needed a cloud platform and a strategic partner with proven expertise in delivering production-ready AI/ML solutions, to quickly bring EarthSnap to the market. That is where Provectus , an AWS Premier Consulting Partner with competencies in Machine Learning, Data & Analytics, and DevOps, stepped in.

DevOps 125
article thumbnail

Governing the ML lifecycle at scale, Part 1: A framework for architecting ML workloads using Amazon SageMaker

AWS Machine Learning Blog

The architecture maps the different capabilities of the ML platform to AWS accounts. The functional architecture with different capabilities is implemented using a number of AWS services, including AWS Organizations , SageMaker, AWS DevOps services, and a data lake.

ML 134
article thumbnail

MLOps Landscape in 2023: Top Tools and Platforms

The MLOps Blog

When thinking about a tool for metadata storage and management, you should consider: General business-related items : Pricing model, security, and support. When thinking about a tool for metadata storage and management, you should consider: General business-related items : Pricing model, security, and support. Can you compare images?