Remove DevOps Remove Metadata Remove ML
article thumbnail

Governing ML lifecycle at scale: Best practices to set up cost and usage visibility of ML workloads in multi-account environments

AWS Machine Learning Blog

By setting up automated policy enforcement and checks, you can achieve cost optimization across your machine learning (ML) environment. Technical tags – These provide metadata about resources. The AWS reserved prefix aws: tags provide additional metadata tracked by AWS. This helps track spending for cost allocation purposes.

ML 118
article thumbnail

Governing the ML lifecycle at scale, Part 3: Setting up data governance at scale

Flipboard

This post is part of an ongoing series about governing the machine learning (ML) lifecycle at scale. The data mesh architecture aims to increase the return on investments in data teams, processes, and technology, ultimately driving business value through innovative analytics and ML projects across the enterprise.

ML 132
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Governing the ML lifecycle at scale, Part 1: A framework for architecting ML workloads using Amazon SageMaker

AWS Machine Learning Blog

Customers of every size and industry are innovating on AWS by infusing machine learning (ML) into their products and services. Recent developments in generative AI models have further sped up the need of ML adoption across industries.

ML 136
article thumbnail

9 data governance strategies that will unlock the potential of your business data

IBM Journey to AI blog

Emerging technologies and trends, such as machine learning (ML), artificial intelligence (AI), automation and generative AI (gen AI), all rely on good data quality. Proactive change management Proactive change management involves the strategies organizations use to manage changes in reference data, master data and metadata.

Metadata 188
article thumbnail

Deploy Amazon SageMaker pipelines using AWS Controllers for Kubernetes

AWS Machine Learning Blog

Its scalability and load-balancing capabilities make it ideal for handling the variable workloads typical of machine learning (ML) applications. Amazon SageMaker provides capabilities to remove the undifferentiated heavy lifting of building and deploying ML models. This entire workflow is shown in the following solution diagram.

DevOps 117
article thumbnail

Fine tune a generative AI application for Amazon Bedrock using Amazon SageMaker Pipeline decorators

AWS Machine Learning Blog

You can use Amazon SageMaker Model Building Pipelines to collaborate between multiple AI/ML teams. SageMaker Pipelines You can use SageMaker Pipelines to define and orchestrate the various steps involved in the ML lifecycle, such as data preprocessing, model training, evaluation, and deployment.

article thumbnail

MLOps Is an Extension of DevOps. Not a Fork — My Thoughts on THE MLOPS Paper as an MLOps Startup CEO

The MLOps Blog

Lived through the DevOps revolution. Came to ML from software. Founded neptune.ai , a modular MLOps component for ML metadata store , aka “experiment tracker + model registry”. Most of our customers are doing ML/MLOps at a reasonable scale, NOT at the hyperscale of big-tech FAANG companies. Ok, let me explain.

DevOps 59