Remove DevOps Remove Explainability Remove ML Engineer
article thumbnail

MLOps and DevOps: Why Data Makes It Different

O'Reilly Media

This is both frustrating for companies that would prefer making ML an ordinary, fuss-free value-generating function like software engineering, as well as exciting for vendors who see the opportunity to create buzz around a new category of enterprise software. Can’t we just fold it into existing DevOps best practices?

DevOps 140
article thumbnail

MLOps and the evolution of data science

IBM Journey to AI blog

Because ML systems require significant resources and hands-on time from often disparate teams, problems arose from lack of collaboration and simple misunderstandings between data scientists and IT teams about how to build out the best process. How to use ML to automate the refining process into a cyclical ML process.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Driving advanced analytics outcomes at scale using Amazon SageMaker powered PwC’s Machine Learning Ops Accelerator

AWS Machine Learning Blog

Many businesses already have data scientists and ML engineers who can build state-of-the-art models, but taking models to production and maintaining the models at scale remains a challenge. Machine learning operations (MLOps) applies DevOps principles to ML systems.

article thumbnail

How Axfood enables accelerated machine learning throughout the organization using Amazon SageMaker

AWS Machine Learning Blog

However, there are many clear benefits of modernizing our ML platform and moving to Amazon SageMaker Studio and Amazon SageMaker Pipelines. Model explainability Model explainability is a pivotal part of ML deployments, because it ensures transparency in predictions.

article thumbnail

MLOps Is an Extension of DevOps. Not a Fork — My Thoughts on THE MLOPS Paper as an MLOps Startup CEO

The MLOps Blog

Lived through the DevOps revolution. Came to ML from software. Founded neptune.ai , a modular MLOps component for ML metadata store , aka “experiment tracker + model registry”. Most of our customers are doing ML/MLOps at a reasonable scale, NOT at the hyperscale of big-tech FAANG companies. Ok, let me explain.

DevOps 59
article thumbnail

Modernizing data science lifecycle management with AWS and Wipro

AWS Machine Learning Blog

This post was written in collaboration with Bhajandeep Singh and Ajay Vishwakarma from Wipro’s AWS AI/ML Practice. Many organizations have been using a combination of on-premises and open source data science solutions to create and manage machine learning (ML) models.

article thumbnail

The Weather Company enhances MLOps with Amazon SageMaker, AWS CloudFormation, and Amazon CloudWatch

AWS Machine Learning Blog

TWCo data scientists and ML engineers took advantage of automation, detailed experiment tracking, integrated training, and deployment pipelines to help scale MLOps effectively. ML model experimentation is one of the sub-components of the MLOps architecture. We encourage to you to get started with Amazon SageMaker today.