Remove DevOps Remove ETL Remove Prompt Engineering
article thumbnail

FMOps/LLMOps: Operationalize generative AI and differences with MLOps

AWS Machine Learning Blog

These teams are as follows: Advanced analytics team (data lake and data mesh) – Data engineers are responsible for preparing and ingesting data from multiple sources, building ETL (extract, transform, and load) pipelines to curate and catalog the data, and prepare the necessary historical data for the ML use cases.

article thumbnail

Learnings From Building the ML Platform at Stitch Fix

The MLOps Blog

At a high level, we are trying to make machine learning initiatives more human capital efficient by enabling teams to more easily get to production and maintain their model pipelines, ETLs, or workflows. We have someone from Adobe using it to help manage some prompt engineering work that they’re doing, for example.

ML 52