Remove Data Platform Remove DevOps Remove NLP
article thumbnail

How Krista Software helped Zimperium speed development and reduce costs with IBM Watson

IBM Journey to AI blog

He then selected Krista’s AI-powered intelligent automation platform to optimize Zimperium’s project management suite, messaging solutions, development and operations (DevOps). The post How Krista Software helped Zimperium speed development and reduce costs with IBM Watson appeared first on IBM Blog.

DevOps 214
article thumbnail

Foundational models at the edge

IBM Journey to AI blog

Large language models (LLMs) are a class of foundational models (FM) that consist of layers of neural networks that have been trained on these massive amounts of unlabeled data. Large language models (LLMs) have taken the field of AI by storm. IBM watsonx consists of the following: IBM watsonx.ai

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Machine Learning Operations (MLOPs) with Azure Machine Learning

ODSC - Open Data Science

Data Estate: This element represents the organizational data estate, potential data sources, and targets for a data science project. Data Engineers would be the primary owners of this element of the MLOps v2 lifecycle. The Azure data platforms in this diagram are neither exhaustive nor prescriptive.

article thumbnail

Learnings From Building the ML Platform at Mailchimp

The MLOps Blog

I switched from analytics to data science, then to machine learning, then to data engineering, then to MLOps. For me, it was a little bit of a longer journey because I kind of had data engineering and cloud engineering and DevOps engineering in between. You shifted straight from data science, if I understand correctly.

ML 52
article thumbnail

Definite Guide to Building a Machine Learning Platform

The MLOps Blog

” — Isaac Vidas , Shopify’s ML Platform Lead, at Ray Summit 2022 Monitoring Monitoring is an essential DevOps practice, and MLOps should be no different. Checking at intervals to make sure that model performance isn’t degrading in production is a good MLOps practice for both teams and platforms.

article thumbnail

How Fastweb fine-tuned the Mistral model using Amazon SageMaker HyperPod as a first step to build an Italian large language model

AWS Machine Learning Blog

Claudia Sacco is an AWS Professional Solutions Architect at BIP xTech, collaborating with Fastwebs AI CoE and specialized in architecting advanced cloud and data platforms that drive innovation and operational excellence. He has expertise in AWS cloud services, DevOps practices, security, data analytics and generative AI.