Remove Data Platform Remove DevOps Remove Explainability
article thumbnail

Foundational models at the edge

IBM Journey to AI blog

These include data ingestion, data selection, data pre-processing, FM pre-training, model tuning to one or more downstream tasks, inference serving, and data and AI model governance and lifecycle management—all of which can be described as FMOps. IBM watsonx consists of the following: IBM watsonx.ai

article thumbnail

How Axfood enables accelerated machine learning throughout the organization using Amazon SageMaker

AWS Machine Learning Blog

Axfood has a structure with multiple decentralized data science teams with different areas of responsibility. Together with a central data platform team, the data science teams bring innovation and digital transformation through AI and ML solutions to the organization.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Governing the ML lifecycle at scale, Part 1: A framework for architecting ML workloads using Amazon SageMaker

AWS Machine Learning Blog

The architecture maps the different capabilities of the ML platform to AWS accounts. The functional architecture with different capabilities is implemented using a number of AWS services, including AWS Organizations , SageMaker, AWS DevOps services, and a data lake.

ML 133
article thumbnail

Top Predictive Analytics Tools/Platforms (2023)

Marktechpost

The company’s H20 Driverless AI streamlines AI development and predictive analytics for professionals and citizen data scientists through open source and customized recipes. The platform makes collaborative data science better for corporate users and simplifies predictive analytics for professional data scientists.

article thumbnail

Learnings From Building the ML Platform at Mailchimp

The MLOps Blog

I switched from analytics to data science, then to machine learning, then to data engineering, then to MLOps. For me, it was a little bit of a longer journey because I kind of had data engineering and cloud engineering and DevOps engineering in between. You shifted straight from data science, if I understand correctly.

ML 52
article thumbnail

Definite Guide to Building a Machine Learning Platform

The MLOps Blog

” — Isaac Vidas , Shopify’s ML Platform Lead, at Ray Summit 2022 Monitoring Monitoring is an essential DevOps practice, and MLOps should be no different. Checking at intervals to make sure that model performance isn’t degrading in production is a good MLOps practice for both teams and platforms.