This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Axfood has a structure with multiple decentralized data science teams with different areas of responsibility. Together with a central dataplatform team, the data science teams bring innovation and digital transformation through AI and ML solutions to the organization. Workflow B corresponds to model quality drift checks.
The advantages of using synthetic data include easing restrictions when using private or controlled data, adjusting the data requirements to specific circumstances that cannot be met with accurate data, and producing datasets for DevOps teams to use for software testing and quality assurance.
Stefan is a software engineer, data scientist, and has been doing work as an ML engineer. He also ran the dataplatform in his previous company and is also co-creator of open-source framework, Hamilton. As you’ve been running the ML dataplatform team, how do you do that? Stefan: Yeah. Thanks for having me.
” — Isaac Vidas , Shopify’s ML Platform Lead, at Ray Summit 2022 Monitoring Monitoring is an essential DevOps practice, and MLOps should be no different. Checking at intervals to make sure that model performance isn’t degrading in production is a good MLOps practice for both teams and platforms.
We organize all of the trending information in your field so you don't have to. Join 15,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content