Remove Data Drift Remove Machine Learning Remove ML Engineer
article thumbnail

AIOps vs. MLOps: Harnessing big data for “smarter” ITOPs

IBM Journey to AI blog

Instead, businesses tend to rely on advanced tools and strategies—namely artificial intelligence for IT operations (AIOps) and machine learning operations (MLOps)—to turn vast quantities of data into actionable insights that can improve IT decision-making and ultimately, the bottom line.

Big Data 266
article thumbnail

How Axfood enables accelerated machine learning throughout the organization using Amazon SageMaker

AWS Machine Learning Blog

In this post, we share how Axfood, a large Swedish food retailer, improved operations and scalability of their existing artificial intelligence (AI) and machine learning (ML) operations by prototyping in close collaboration with AWS experts and using Amazon SageMaker. This is a guest post written by Axfood AB.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Building Generative AI and ML solutions faster with AI apps from AWS partners using Amazon SageMaker

AWS Machine Learning Blog

This increases the time it takes for customers to go from data to insights. Our customers want a simple and secure way to find the best applications, integrate the selected applications into their machine learning (ML) and generative AI development environment, manage and scale their AI projects.

ML 138
article thumbnail

Modernizing data science lifecycle management with AWS and Wipro

AWS Machine Learning Blog

This post was written in collaboration with Bhajandeep Singh and Ajay Vishwakarma from Wipro’s AWS AI/ML Practice. Many organizations have been using a combination of on-premises and open source data science solutions to create and manage machine learning (ML) models.

article thumbnail

Machine Learning Operations (MLOPs) with Azure Machine Learning

ODSC - Open Data Science

Machine Learning Operations (MLOps) can significantly accelerate how data scientists and ML engineers meet organizational needs. The data science team is now expected to be equipped with CI/CD skills to sustain ongoing inference with retraining cycles and automated redeployments of models.

article thumbnail

Importance of Machine Learning Model Retraining in Production

Heartbeat

Ensuring Long-Term Performance and Adaptability of Deployed Models Source: [link] Introduction When working on any machine learning problem, data scientists and machine learning engineers usually spend a lot of time on data gathering , efficient data preprocessing , and modeling to build the best model for the use case.

article thumbnail

How Kakao Games automates lifetime value prediction from game data using Amazon SageMaker and AWS Glue

AWS Machine Learning Blog

Statistical methods and machine learning (ML) methods are actively developed and adopted to maximize the LTV. Challenges In this section, we discuss challenges around various data sources, data drift caused by internal or external events, and solution reusability.